Sepolia Testnet

Token

www.ganjacoin.wtf (ganja)
ERC-20

Overview

Max Total Supply

42,000,000,000 ganja

Holders

21,111

Market

Onchain Market Cap

$0.00

Circulating Supply Market Cap

-

Other Info

Token Contract (WITH 18 Decimals)

Balance
3,780 ganja
0x28e7db0d56de317b93d7a998105ba81cf736546d
Loading...
Loading
Loading...
Loading
Loading...
Loading

Click here to update the token information / general information
# Exchange Pair Price  24H Volume % Volume

Contract Source Code Verified (Exact Match)

Contract Name:
GanjacoinWtf

Compiler Version
v0.8.26+commit.8a97fa7a

Optimization Enabled:
No with 200 runs

Other Settings:
default evmVersion

Contract Source Code (Solidity Standard Json-Input format)

File 1 of 17 : ganjatokentestnet.sol
// SPDX-License-Identifier: MIT
// Compatible with OpenZeppelin Contracts ^5.0.0

/*
 * 🚀 GanjaTokenDistributor Contract 🚀
 * Welcome to the future of decentralized finance with GanjaToken! This contract allows you to distribute Ganja tokens effortlessly to multiple recipients on the testnet.
 *
 * 🌐 Dive into the GanjaToken ecosystem and discover the benefits of our community-driven project. Whether you're a seasoned crypto enthusiast or a newcomer, GanjaToken offers something for everyone.
 *
 * 🌱 For more details, visit our official website: https://ganjacoin.wtf
 * 🐦 Follow us on Twitter for the latest updates: https://x.com/ganjacoin420
 * 📢 Join our vibrant community on Telegram: https://t.me/ganjacoin420
 *
 * Embrace the green revolution and be part of the GanjaToken journey today! 🚀💚
 */
pragma solidity ^0.8.20;

import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "@openzeppelin/contracts/token/ERC20/extensions/ERC20Permit.sol";

contract GanjacoinWtf is ERC20, ERC20Permit {
    constructor() ERC20("www.ganjacoin.wtf", "ganja") ERC20Permit("ganjacoin.wtf") {
        _mint(msg.sender, 42000000000 * 10 ** decimals());
    }
}

File 2 of 17 : ERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC20Permit.sol)

pragma solidity ^0.8.20;

import {IERC20Permit} from "./IERC20Permit.sol";
import {ERC20} from "../ERC20.sol";
import {ECDSA} from "../../../utils/cryptography/ECDSA.sol";
import {EIP712} from "../../../utils/cryptography/EIP712.sol";
import {Nonces} from "../../../utils/Nonces.sol";

/**
 * @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712, Nonces {
    bytes32 private constant PERMIT_TYPEHASH =
        keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");

    /**
     * @dev Permit deadline has expired.
     */
    error ERC2612ExpiredSignature(uint256 deadline);

    /**
     * @dev Mismatched signature.
     */
    error ERC2612InvalidSigner(address signer, address owner);

    /**
     * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
     *
     * It's a good idea to use the same `name` that is defined as the ERC20 token name.
     */
    constructor(string memory name) EIP712(name, "1") {}

    /**
     * @inheritdoc IERC20Permit
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual {
        if (block.timestamp > deadline) {
            revert ERC2612ExpiredSignature(deadline);
        }

        bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));

        bytes32 hash = _hashTypedDataV4(structHash);

        address signer = ECDSA.recover(hash, v, r, s);
        if (signer != owner) {
            revert ERC2612InvalidSigner(signer, owner);
        }

        _approve(owner, spender, value);
    }

    /**
     * @inheritdoc IERC20Permit
     */
    function nonces(address owner) public view virtual override(IERC20Permit, Nonces) returns (uint256) {
        return super.nonces(owner);
    }

    /**
     * @inheritdoc IERC20Permit
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view virtual returns (bytes32) {
        return _domainSeparatorV4();
    }
}

File 3 of 17 : ERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.0;

import "./IERC20.sol";
import "./extensions/IERC20Metadata.sol";
import "../../utils/Context.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20PresetMinterPauser}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC20
 * applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20 is Context, IERC20, IERC20Metadata {
    mapping(address => uint256) private _balances;

    mapping(address => mapping(address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * The default value of {decimals} is 18. To select a different value for
     * {decimals} you should overload it.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual override returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual override returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the value {ERC20} uses, unless this function is
     * overridden;
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual override returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual override returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual override returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address to, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, amount);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, amount);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `amount`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `amount`.
     */
    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) public virtual override returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, amount);
        _transfer(from, to, amount);
        return true;
    }

    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, allowance(owner, spender) + addedValue);
        return true;
    }

    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        address owner = _msgSender();
        uint256 currentAllowance = allowance(owner, spender);
        require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
        unchecked {
            _approve(owner, spender, currentAllowance - subtractedValue);
        }

        return true;
    }

    /**
     * @dev Moves `amount` of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `from` must have a balance of at least `amount`.
     */
    function _transfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {
        require(from != address(0), "ERC20: transfer from the zero address");
        require(to != address(0), "ERC20: transfer to the zero address");

        _beforeTokenTransfer(from, to, amount);

        uint256 fromBalance = _balances[from];
        require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
        unchecked {
            _balances[from] = fromBalance - amount;
            // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
            // decrementing then incrementing.
            _balances[to] += amount;
        }

        emit Transfer(from, to, amount);

        _afterTokenTransfer(from, to, amount);
    }

    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");

        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply += amount;
        unchecked {
            // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
            _balances[account] += amount;
        }
        emit Transfer(address(0), account, amount);

        _afterTokenTransfer(address(0), account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        _beforeTokenTransfer(account, address(0), amount);

        uint256 accountBalance = _balances[account];
        require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
        unchecked {
            _balances[account] = accountBalance - amount;
            // Overflow not possible: amount <= accountBalance <= totalSupply.
            _totalSupply -= amount;
        }

        emit Transfer(account, address(0), amount);

        _afterTokenTransfer(account, address(0), amount);
    }

    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(
        address owner,
        address spender,
        uint256 amount
    ) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
     *
     * Does not update the allowance amount in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Might emit an {Approval} event.
     */
    function _spendAllowance(
        address owner,
        address spender,
        uint256 amount
    ) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            require(currentAllowance >= amount, "ERC20: insufficient allowance");
            unchecked {
                _approve(owner, spender, currentAllowance - amount);
            }
        }
    }

    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {}

    /**
     * @dev Hook that is called after any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * has been transferred to `to`.
     * - when `from` is zero, `amount` tokens have been minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _afterTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {}
}

File 4 of 17 : Nonces.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol)
pragma solidity ^0.8.20;

/**
 * @dev Provides tracking nonces for addresses. Nonces will only increment.
 */
abstract contract Nonces {
    /**
     * @dev The nonce used for an `account` is not the expected current nonce.
     */
    error InvalidAccountNonce(address account, uint256 currentNonce);

    mapping(address account => uint256) private _nonces;

    /**
     * @dev Returns the next unused nonce for an address.
     */
    function nonces(address owner) public view virtual returns (uint256) {
        return _nonces[owner];
    }

    /**
     * @dev Consumes a nonce.
     *
     * Returns the current value and increments nonce.
     */
    function _useNonce(address owner) internal virtual returns (uint256) {
        // For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be
        // decremented or reset. This guarantees that the nonce never overflows.
        unchecked {
            // It is important to do x++ and not ++x here.
            return _nonces[owner]++;
        }
    }

    /**
     * @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`.
     */
    function _useCheckedNonce(address owner, uint256 nonce) internal virtual {
        uint256 current = _useNonce(owner);
        if (nonce != current) {
            revert InvalidAccountNonce(owner, current);
        }
    }
}

File 5 of 17 : EIP712.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/EIP712.sol)

pragma solidity ^0.8.20;

import {MessageHashUtils} from "./MessageHashUtils.sol";
import {ShortStrings, ShortString} from "../ShortStrings.sol";
import {IERC5267} from "../../interfaces/IERC5267.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
 * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
 * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
 * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
 * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
 * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
 *
 * @custom:oz-upgrades-unsafe-allow state-variable-immutable
 */
abstract contract EIP712 is IERC5267 {
    using ShortStrings for *;

    bytes32 private constant TYPE_HASH =
        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");

    // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
    // invalidate the cached domain separator if the chain id changes.
    bytes32 private immutable _cachedDomainSeparator;
    uint256 private immutable _cachedChainId;
    address private immutable _cachedThis;

    bytes32 private immutable _hashedName;
    bytes32 private immutable _hashedVersion;

    ShortString private immutable _name;
    ShortString private immutable _version;
    string private _nameFallback;
    string private _versionFallback;

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(string memory name, string memory version) {
        _name = name.toShortStringWithFallback(_nameFallback);
        _version = version.toShortStringWithFallback(_versionFallback);
        _hashedName = keccak256(bytes(name));
        _hashedVersion = keccak256(bytes(version));

        _cachedChainId = block.chainid;
        _cachedDomainSeparator = _buildDomainSeparator();
        _cachedThis = address(this);
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
            return _cachedDomainSeparator;
        } else {
            return _buildDomainSeparator();
        }
    }

    function _buildDomainSeparator() private view returns (bytes32) {
        return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
    }

    /**
     * @dev See {IERC-5267}.
     */
    function eip712Domain()
        public
        view
        virtual
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        )
    {
        return (
            hex"0f", // 01111
            _EIP712Name(),
            _EIP712Version(),
            block.chainid,
            address(this),
            bytes32(0),
            new uint256[](0)
        );
    }

    /**
     * @dev The name parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _name which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Name() internal view returns (string memory) {
        return _name.toStringWithFallback(_nameFallback);
    }

    /**
     * @dev The version parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _version which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Version() internal view returns (string memory) {
        return _version.toStringWithFallback(_versionFallback);
    }
}

File 6 of 17 : ECDSA.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     */
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address, RecoverError, bytes32) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}

File 7 of 17 : IERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

File 8 of 17 : Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

File 9 of 17 : IERC20Metadata.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 *
 * _Available since v4.1._
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

File 10 of 17 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) external returns (bool);
}

File 11 of 17 : IERC5267.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)

pragma solidity ^0.8.20;

interface IERC5267 {
    /**
     * @dev MAY be emitted to signal that the domain could have changed.
     */
    event EIP712DomainChanged();

    /**
     * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
     * signature.
     */
    function eip712Domain()
        external
        view
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        );
}

File 12 of 17 : ShortStrings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ShortStrings.sol)

pragma solidity ^0.8.20;

import {StorageSlot} from "./StorageSlot.sol";

// | string  | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   |
// | length  | 0x                                                              BB |
type ShortString is bytes32;

/**
 * @dev This library provides functions to convert short memory strings
 * into a `ShortString` type that can be used as an immutable variable.
 *
 * Strings of arbitrary length can be optimized using this library if
 * they are short enough (up to 31 bytes) by packing them with their
 * length (1 byte) in a single EVM word (32 bytes). Additionally, a
 * fallback mechanism can be used for every other case.
 *
 * Usage example:
 *
 * ```solidity
 * contract Named {
 *     using ShortStrings for *;
 *
 *     ShortString private immutable _name;
 *     string private _nameFallback;
 *
 *     constructor(string memory contractName) {
 *         _name = contractName.toShortStringWithFallback(_nameFallback);
 *     }
 *
 *     function name() external view returns (string memory) {
 *         return _name.toStringWithFallback(_nameFallback);
 *     }
 * }
 * ```
 */
library ShortStrings {
    // Used as an identifier for strings longer than 31 bytes.
    bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;

    error StringTooLong(string str);
    error InvalidShortString();

    /**
     * @dev Encode a string of at most 31 chars into a `ShortString`.
     *
     * This will trigger a `StringTooLong` error is the input string is too long.
     */
    function toShortString(string memory str) internal pure returns (ShortString) {
        bytes memory bstr = bytes(str);
        if (bstr.length > 31) {
            revert StringTooLong(str);
        }
        return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
    }

    /**
     * @dev Decode a `ShortString` back to a "normal" string.
     */
    function toString(ShortString sstr) internal pure returns (string memory) {
        uint256 len = byteLength(sstr);
        // using `new string(len)` would work locally but is not memory safe.
        string memory str = new string(32);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(str, len)
            mstore(add(str, 0x20), sstr)
        }
        return str;
    }

    /**
     * @dev Return the length of a `ShortString`.
     */
    function byteLength(ShortString sstr) internal pure returns (uint256) {
        uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
        if (result > 31) {
            revert InvalidShortString();
        }
        return result;
    }

    /**
     * @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
     */
    function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
        if (bytes(value).length < 32) {
            return toShortString(value);
        } else {
            StorageSlot.getStringSlot(store).value = value;
            return ShortString.wrap(FALLBACK_SENTINEL);
        }
    }

    /**
     * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
     */
    function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return toString(value);
        } else {
            return store;
        }
    }

    /**
     * @dev Return the length of a string that was encoded to `ShortString` or written to storage using
     * {setWithFallback}.
     *
     * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
     * actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
     */
    function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return byteLength(value);
        } else {
            return bytes(store).length;
        }
    }
}

File 13 of 17 : MessageHashUtils.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol)

pragma solidity ^0.8.20;

import {Strings} from "../Strings.sol";

/**
 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
 *
 * The library provides methods for generating a hash of a message that conforms to the
 * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
 * specifications.
 */
library MessageHashUtils {
    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing a bytes32 `messageHash` with
     * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
     * keccak256, although any bytes32 value can be safely used because the final digest will
     * be re-hashed.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
            mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
            digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing an arbitrary `message` with
     * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
        return
            keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x00` (data with intended validator).
     *
     * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
     * `validator` address. Then hashing the result.
     *
     * See {ECDSA-recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(hex"19_00", validator, data));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`).
     *
     * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
     * `\x19\x01` and hashing the result. It corresponds to the hash signed by the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
     *
     * See {ECDSA-recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, hex"19_01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            digest := keccak256(ptr, 0x42)
        }
    }
}

File 14 of 17 : Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

File 15 of 17 : StorageSlot.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }
}

File 16 of 17 : SignedMath.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

File 17 of 17 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

Settings
{
  "optimizer": {
    "enabled": false,
    "runs": 200
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  }
}

Contract ABI

[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"ECDSAInvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"length","type":"uint256"}],"name":"ECDSAInvalidSignatureLength","type":"error"},{"inputs":[{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"ECDSAInvalidSignatureS","type":"error"},{"inputs":[{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"ERC2612ExpiredSignature","type":"error"},{"inputs":[{"internalType":"address","name":"signer","type":"address"},{"internalType":"address","name":"owner","type":"address"}],"name":"ERC2612InvalidSigner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"currentNonce","type":"uint256"}],"name":"InvalidAccountNonce","type":"error"},{"inputs":[],"name":"InvalidShortString","type":"error"},{"inputs":[{"internalType":"string","name":"str","type":"string"}],"name":"StringTooLong","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[],"name":"EIP712DomainChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"DOMAIN_SEPARATOR","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"subtractedValue","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"permit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"}]

610160604052348015610010575f80fd5b506040518060400160405280600d81526020017f67616e6a61636f696e2e77746600000000000000000000000000000000000000815250806040518060400160405280600181526020017f31000000000000000000000000000000000000000000000000000000000000008152506040518060400160405280601181526020017f7777772e67616e6a61636f696e2e7774660000000000000000000000000000008152506040518060400160405280600581526020017f67616e6a6100000000000000000000000000000000000000000000000000000081525081600390816100f991906106b0565b50806004908161010991906106b0565b5050506101206005836101f560201b90919060201c565b610120818152505061013c6006826101f560201b90919060201c565b6101408181525050818051906020012060e08181525050808051906020012061010081815250504660a0818152505061017961024260201b60201c565b608081815250503073ffffffffffffffffffffffffffffffffffffffff1660c08173ffffffffffffffffffffffffffffffffffffffff16815250505050506101f0336101c961029c60201b60201c565b600a6101d591906108e7565b6409c76524006101e59190610931565b6102a460201b60201c565b610bf6565b5f6020835110156102165761020f836103fe60201b60201c565b905061023c565b826102268361046360201b60201c565b5f01908161023491906106b0565b5060ff5f1b90505b92915050565b5f7f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60e0516101005146306040516020016102819594939291906109d8565b60405160208183030381529060405280519060200120905090565b5f6012905090565b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603610312576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161030990610a83565b60405180910390fd5b6103235f838361046c60201b60201c565b8060025f8282546103349190610aa1565b92505081905550805f808473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f82825401925050819055508173ffffffffffffffffffffffffffffffffffffffff165f73ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef836040516103e19190610ad4565b60405180910390a36103fa5f838361047160201b60201c565b5050565b5f80829050601f8151111561044a57826040517f305a27a90000000000000000000000000000000000000000000000000000000081526004016104419190610b43565b60405180910390fd5b80518161045690610b90565b5f1c175f1b915050919050565b5f819050919050565b505050565b505050565b5f81519050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b5f60028204905060018216806104f157607f821691505b602082108103610504576105036104ad565b5b50919050565b5f819050815f5260205f209050919050565b5f6020601f8301049050919050565b5f82821b905092915050565b5f600883026105667fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8261052b565b610570868361052b565b95508019841693508086168417925050509392505050565b5f819050919050565b5f819050919050565b5f6105b46105af6105aa84610588565b610591565b610588565b9050919050565b5f819050919050565b6105cd8361059a565b6105e16105d9826105bb565b848454610537565b825550505050565b5f90565b6105f56105e9565b6106008184846105c4565b505050565b5b81811015610623576106185f826105ed565b600181019050610606565b5050565b601f821115610668576106398161050a565b6106428461051c565b81016020851015610651578190505b61066561065d8561051c565b830182610605565b50505b505050565b5f82821c905092915050565b5f6106885f198460080261066d565b1980831691505092915050565b5f6106a08383610679565b9150826002028217905092915050565b6106b982610476565b67ffffffffffffffff8111156106d2576106d1610480565b5b6106dc82546104da565b6106e7828285610627565b5f60209050601f831160018114610718575f8415610706578287015190505b6107108582610695565b865550610777565b601f1984166107268661050a565b5f5b8281101561074d57848901518255600182019150602085019450602081019050610728565b8683101561076a5784890151610766601f891682610679565b8355505b6001600288020188555050505b505050505050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f8160011c9050919050565b5f808291508390505b6001851115610801578086048111156107dd576107dc61077f565b5b60018516156107ec5780820291505b80810290506107fa856107ac565b94506107c1565b94509492505050565b5f8261081957600190506108d4565b81610826575f90506108d4565b816001811461083c576002811461084657610875565b60019150506108d4565b60ff8411156108585761085761077f565b5b8360020a91508482111561086f5761086e61077f565b5b506108d4565b5060208310610133831016604e8410600b84101617156108aa5782820a9050838111156108a5576108a461077f565b5b6108d4565b6108b784848460016107b8565b925090508184048111156108ce576108cd61077f565b5b81810290505b9392505050565b5f60ff82169050919050565b5f6108f182610588565b91506108fc836108db565b92506109297fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff848461080a565b905092915050565b5f61093b82610588565b915061094683610588565b925082820261095481610588565b9150828204841483151761096b5761096a61077f565b5b5092915050565b5f819050919050565b61098481610972565b82525050565b61099381610588565b82525050565b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f6109c282610999565b9050919050565b6109d2816109b8565b82525050565b5f60a0820190506109eb5f83018861097b565b6109f8602083018761097b565b610a05604083018661097b565b610a12606083018561098a565b610a1f60808301846109c9565b9695505050505050565b5f82825260208201905092915050565b7f45524332303a206d696e7420746f20746865207a65726f2061646472657373005f82015250565b5f610a6d601f83610a29565b9150610a7882610a39565b602082019050919050565b5f6020820190508181035f830152610a9a81610a61565b9050919050565b5f610aab82610588565b9150610ab683610588565b9250828201905080821115610ace57610acd61077f565b5b92915050565b5f602082019050610ae75f83018461098a565b92915050565b8281835e5f83830152505050565b5f601f19601f8301169050919050565b5f610b1582610476565b610b1f8185610a29565b9350610b2f818560208601610aed565b610b3881610afb565b840191505092915050565b5f6020820190508181035f830152610b5b8184610b0b565b905092915050565b5f81519050919050565b5f819050602082019050919050565b5f610b878251610972565b80915050919050565b5f610b9a82610b63565b82610ba484610b6d565b9050610baf81610b7c565b92506020821015610bef57610bea7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8360200360080261052b565b831692505b5050919050565b60805160a05160c05160e051610100516101205161014051611f3b610c475f395f610e6c01525f610e3101525f610f8701525f610f6601525f610d2f01525f610d8501525f610dae0152611f3b5ff3fe608060405234801561000f575f80fd5b50600436106100f3575f3560e01c806370a0823111610095578063a457c2d711610064578063a457c2d7146102a1578063a9059cbb146102d1578063d505accf14610301578063dd62ed3e1461031d576100f3565b806370a08231146101ff5780637ecebe001461022f57806384b0196e1461025f57806395d89b4114610283576100f3565b806323b872dd116100d157806323b872dd14610163578063313ce567146101935780633644e515146101b157806339509351146101cf576100f3565b806306fdde03146100f7578063095ea7b31461011557806318160ddd14610145575b5f80fd5b6100ff61034d565b60405161010c919061143d565b60405180910390f35b61012f600480360381019061012a91906114ee565b6103dd565b60405161013c9190611546565b60405180910390f35b61014d6103ff565b60405161015a919061156e565b60405180910390f35b61017d60048036038101906101789190611587565b610408565b60405161018a9190611546565b60405180910390f35b61019b610436565b6040516101a891906115f2565b60405180910390f35b6101b961043e565b6040516101c69190611623565b60405180910390f35b6101e960048036038101906101e491906114ee565b61044c565b6040516101f69190611546565b60405180910390f35b6102196004803603810190610214919061163c565b610482565b604051610226919061156e565b60405180910390f35b6102496004803603810190610244919061163c565b6104c7565b604051610256919061156e565b60405180910390f35b6102676104d8565b60405161027a9796959493929190611767565b60405180910390f35b61028b61057d565b604051610298919061143d565b60405180910390f35b6102bb60048036038101906102b691906114ee565b61060d565b6040516102c89190611546565b60405180910390f35b6102eb60048036038101906102e691906114ee565b610682565b6040516102f89190611546565b60405180910390f35b61031b6004803603810190610316919061183d565b6106a4565b005b610337600480360381019061033291906118da565b6107e9565b604051610344919061156e565b60405180910390f35b60606003805461035c90611945565b80601f016020809104026020016040519081016040528092919081815260200182805461038890611945565b80156103d35780601f106103aa576101008083540402835291602001916103d3565b820191905f5260205f20905b8154815290600101906020018083116103b657829003601f168201915b5050505050905090565b5f806103e761086b565b90506103f4818585610872565b600191505092915050565b5f600254905090565b5f8061041261086b565b905061041f858285610a35565b61042a858585610ac0565b60019150509392505050565b5f6012905090565b5f610447610d2c565b905090565b5f8061045661086b565b905061047781858561046885896107e9565b61047291906119a2565b610872565b600191505092915050565b5f805f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20549050919050565b5f6104d182610de2565b9050919050565b5f6060805f805f60606104e9610e28565b6104f1610e63565b46305f801b5f67ffffffffffffffff8111156105105761050f6119d5565b5b60405190808252806020026020018201604052801561053e5781602001602082028036833780820191505090505b507f0f00000000000000000000000000000000000000000000000000000000000000959493929190965096509650965096509650965090919293949596565b60606004805461058c90611945565b80601f01602080910402602001604051908101604052809291908181526020018280546105b890611945565b80156106035780601f106105da57610100808354040283529160200191610603565b820191905f5260205f20905b8154815290600101906020018083116105e657829003601f168201915b5050505050905090565b5f8061061761086b565b90505f61062482866107e9565b905083811015610669576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161066090611a72565b60405180910390fd5b6106768286868403610872565b60019250505092915050565b5f8061068c61086b565b9050610699818585610ac0565b600191505092915050565b834211156106e957836040517f627913020000000000000000000000000000000000000000000000000000000081526004016106e0919061156e565b60405180910390fd5b5f7f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c98888886107178c610e9e565b8960405160200161072d96959493929190611a90565b6040516020818303038152906040528051906020012090505f61074f82610ef1565b90505f61075e82878787610f0a565b90508973ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff16146107d257808a6040517f4b800e460000000000000000000000000000000000000000000000000000000081526004016107c9929190611aef565b60405180910390fd5b6107dd8a8a8a610872565b50505050505050505050565b5f60015f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905092915050565b5f33905090565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff16036108e0576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016108d790611b86565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff160361094e576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161094590611c14565b60405180910390fd5b8060015f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055508173ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92583604051610a28919061156e565b60405180910390a3505050565b5f610a4084846107e9565b90507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8114610aba5781811015610aac576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610aa390611c7c565b60405180910390fd5b610ab98484848403610872565b5b50505050565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1603610b2e576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610b2590611d0a565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603610b9c576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610b9390611d98565b60405180910390fd5b610ba7838383610f38565b5f805f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905081811015610c2a576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610c2190611e26565b60405180910390fd5b8181035f808673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2081905550815f808573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f82825401925050819055508273ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef84604051610d13919061156e565b60405180910390a3610d26848484610f3d565b50505050565b5f7f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff163073ffffffffffffffffffffffffffffffffffffffff16148015610da757507f000000000000000000000000000000000000000000000000000000000000000046145b15610dd4577f00000000000000000000000000000000000000000000000000000000000000009050610ddf565b610ddc610f42565b90505b90565b5f60075f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20549050919050565b6060610e5e60057f0000000000000000000000000000000000000000000000000000000000000000610fd790919063ffffffff16565b905090565b6060610e9960067f0000000000000000000000000000000000000000000000000000000000000000610fd790919063ffffffff16565b905090565b5f60075f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f815480929190600101919050559050919050565b5f610f03610efd610d2c565b83611084565b9050919050565b5f805f80610f1a888888886110c4565b925092509250610f2a82826111ab565b829350505050949350505050565b505050565b505050565b5f7f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f7f00000000000000000000000000000000000000000000000000000000000000007f00000000000000000000000000000000000000000000000000000000000000004630604051602001610fbc959493929190611e44565b60405160208183030381529060405280519060200120905090565b606060ff5f1b8314610ff357610fec8361130d565b905061107e565b818054610fff90611945565b80601f016020809104026020016040519081016040528092919081815260200182805461102b90611945565b80156110765780601f1061104d57610100808354040283529160200191611076565b820191905f5260205f20905b81548152906001019060200180831161105957829003601f168201915b505050505090505b92915050565b5f6040517f190100000000000000000000000000000000000000000000000000000000000081528360028201528260228201526042812091505092915050565b5f805f7f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0845f1c1115611100575f6003859250925092506111a1565b5f6001888888886040515f81526020016040526040516111239493929190611e95565b6020604051602081039080840390855afa158015611143573d5f803e3d5ffd5b5050506020604051035190505f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1603611194575f60015f801b935093509350506111a1565b805f805f1b935093509350505b9450945094915050565b5f60038111156111be576111bd611ed8565b5b8260038111156111d1576111d0611ed8565b5b031561130957600160038111156111eb576111ea611ed8565b5b8260038111156111fe576111fd611ed8565b5b03611235576040517ff645eedf00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6002600381111561124957611248611ed8565b5b82600381111561125c5761125b611ed8565b5b036112a057805f1c6040517ffce698f7000000000000000000000000000000000000000000000000000000008152600401611297919061156e565b60405180910390fd5b6003808111156112b3576112b2611ed8565b5b8260038111156112c6576112c5611ed8565b5b0361130857806040517fd78bce0c0000000000000000000000000000000000000000000000000000000081526004016112ff9190611623565b60405180910390fd5b5b5050565b60605f6113198361137f565b90505f602067ffffffffffffffff811115611337576113366119d5565b5b6040519080825280601f01601f1916602001820160405280156113695781602001600182028036833780820191505090505b5090508181528360208201528092505050919050565b5f8060ff835f1c169050601f8111156113c4576040517fb3512b0c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b80915050919050565b5f81519050919050565b5f82825260208201905092915050565b8281835e5f83830152505050565b5f601f19601f8301169050919050565b5f61140f826113cd565b61141981856113d7565b93506114298185602086016113e7565b611432816113f5565b840191505092915050565b5f6020820190508181035f8301526114558184611405565b905092915050565b5f80fd5b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f61148a82611461565b9050919050565b61149a81611480565b81146114a4575f80fd5b50565b5f813590506114b581611491565b92915050565b5f819050919050565b6114cd816114bb565b81146114d7575f80fd5b50565b5f813590506114e8816114c4565b92915050565b5f80604083850312156115045761150361145d565b5b5f611511858286016114a7565b9250506020611522858286016114da565b9150509250929050565b5f8115159050919050565b6115408161152c565b82525050565b5f6020820190506115595f830184611537565b92915050565b611568816114bb565b82525050565b5f6020820190506115815f83018461155f565b92915050565b5f805f6060848603121561159e5761159d61145d565b5b5f6115ab868287016114a7565b93505060206115bc868287016114a7565b92505060406115cd868287016114da565b9150509250925092565b5f60ff82169050919050565b6115ec816115d7565b82525050565b5f6020820190506116055f8301846115e3565b92915050565b5f819050919050565b61161d8161160b565b82525050565b5f6020820190506116365f830184611614565b92915050565b5f602082840312156116515761165061145d565b5b5f61165e848285016114a7565b91505092915050565b5f7fff0000000000000000000000000000000000000000000000000000000000000082169050919050565b61169b81611667565b82525050565b6116aa81611480565b82525050565b5f81519050919050565b5f82825260208201905092915050565b5f819050602082019050919050565b6116e2816114bb565b82525050565b5f6116f383836116d9565b60208301905092915050565b5f602082019050919050565b5f611715826116b0565b61171f81856116ba565b935061172a836116ca565b805f5b8381101561175a57815161174188826116e8565b975061174c836116ff565b92505060018101905061172d565b5085935050505092915050565b5f60e08201905061177a5f83018a611692565b818103602083015261178c8189611405565b905081810360408301526117a08188611405565b90506117af606083018761155f565b6117bc60808301866116a1565b6117c960a0830185611614565b81810360c08301526117db818461170b565b905098975050505050505050565b6117f2816115d7565b81146117fc575f80fd5b50565b5f8135905061180d816117e9565b92915050565b61181c8161160b565b8114611826575f80fd5b50565b5f8135905061183781611813565b92915050565b5f805f805f805f60e0888a0312156118585761185761145d565b5b5f6118658a828b016114a7565b97505060206118768a828b016114a7565b96505060406118878a828b016114da565b95505060606118988a828b016114da565b94505060806118a98a828b016117ff565b93505060a06118ba8a828b01611829565b92505060c06118cb8a828b01611829565b91505092959891949750929550565b5f80604083850312156118f0576118ef61145d565b5b5f6118fd858286016114a7565b925050602061190e858286016114a7565b9150509250929050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b5f600282049050600182168061195c57607f821691505b60208210810361196f5761196e611918565b5b50919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f6119ac826114bb565b91506119b7836114bb565b92508282019050808211156119cf576119ce611975565b5b92915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b7f45524332303a2064656372656173656420616c6c6f77616e63652062656c6f775f8201527f207a65726f000000000000000000000000000000000000000000000000000000602082015250565b5f611a5c6025836113d7565b9150611a6782611a02565b604082019050919050565b5f6020820190508181035f830152611a8981611a50565b9050919050565b5f60c082019050611aa35f830189611614565b611ab060208301886116a1565b611abd60408301876116a1565b611aca606083018661155f565b611ad7608083018561155f565b611ae460a083018461155f565b979650505050505050565b5f604082019050611b025f8301856116a1565b611b0f60208301846116a1565b9392505050565b7f45524332303a20617070726f76652066726f6d20746865207a65726f206164645f8201527f7265737300000000000000000000000000000000000000000000000000000000602082015250565b5f611b706024836113d7565b9150611b7b82611b16565b604082019050919050565b5f6020820190508181035f830152611b9d81611b64565b9050919050565b7f45524332303a20617070726f766520746f20746865207a65726f2061646472655f8201527f7373000000000000000000000000000000000000000000000000000000000000602082015250565b5f611bfe6022836113d7565b9150611c0982611ba4565b604082019050919050565b5f6020820190508181035f830152611c2b81611bf2565b9050919050565b7f45524332303a20696e73756666696369656e7420616c6c6f77616e63650000005f82015250565b5f611c66601d836113d7565b9150611c7182611c32565b602082019050919050565b5f6020820190508181035f830152611c9381611c5a565b9050919050565b7f45524332303a207472616e736665722066726f6d20746865207a65726f2061645f8201527f6472657373000000000000000000000000000000000000000000000000000000602082015250565b5f611cf46025836113d7565b9150611cff82611c9a565b604082019050919050565b5f6020820190508181035f830152611d2181611ce8565b9050919050565b7f45524332303a207472616e7366657220746f20746865207a65726f20616464725f8201527f6573730000000000000000000000000000000000000000000000000000000000602082015250565b5f611d826023836113d7565b9150611d8d82611d28565b604082019050919050565b5f6020820190508181035f830152611daf81611d76565b9050919050565b7f45524332303a207472616e7366657220616d6f756e74206578636565647320625f8201527f616c616e63650000000000000000000000000000000000000000000000000000602082015250565b5f611e106026836113d7565b9150611e1b82611db6565b604082019050919050565b5f6020820190508181035f830152611e3d81611e04565b9050919050565b5f60a082019050611e575f830188611614565b611e646020830187611614565b611e716040830186611614565b611e7e606083018561155f565b611e8b60808301846116a1565b9695505050505050565b5f608082019050611ea85f830187611614565b611eb560208301866115e3565b611ec26040830185611614565b611ecf6060830184611614565b95945050505050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602160045260245ffdfea26469706673582212205caa9bd37aca94b47df583bc9eb1c012f73225d3d4e0634bfbce04fcadf05b0664736f6c634300081a0033

Deployed Bytecode

0x608060405234801561000f575f80fd5b50600436106100f3575f3560e01c806370a0823111610095578063a457c2d711610064578063a457c2d7146102a1578063a9059cbb146102d1578063d505accf14610301578063dd62ed3e1461031d576100f3565b806370a08231146101ff5780637ecebe001461022f57806384b0196e1461025f57806395d89b4114610283576100f3565b806323b872dd116100d157806323b872dd14610163578063313ce567146101935780633644e515146101b157806339509351146101cf576100f3565b806306fdde03146100f7578063095ea7b31461011557806318160ddd14610145575b5f80fd5b6100ff61034d565b60405161010c919061143d565b60405180910390f35b61012f600480360381019061012a91906114ee565b6103dd565b60405161013c9190611546565b60405180910390f35b61014d6103ff565b60405161015a919061156e565b60405180910390f35b61017d60048036038101906101789190611587565b610408565b60405161018a9190611546565b60405180910390f35b61019b610436565b6040516101a891906115f2565b60405180910390f35b6101b961043e565b6040516101c69190611623565b60405180910390f35b6101e960048036038101906101e491906114ee565b61044c565b6040516101f69190611546565b60405180910390f35b6102196004803603810190610214919061163c565b610482565b604051610226919061156e565b60405180910390f35b6102496004803603810190610244919061163c565b6104c7565b604051610256919061156e565b60405180910390f35b6102676104d8565b60405161027a9796959493929190611767565b60405180910390f35b61028b61057d565b604051610298919061143d565b60405180910390f35b6102bb60048036038101906102b691906114ee565b61060d565b6040516102c89190611546565b60405180910390f35b6102eb60048036038101906102e691906114ee565b610682565b6040516102f89190611546565b60405180910390f35b61031b6004803603810190610316919061183d565b6106a4565b005b610337600480360381019061033291906118da565b6107e9565b604051610344919061156e565b60405180910390f35b60606003805461035c90611945565b80601f016020809104026020016040519081016040528092919081815260200182805461038890611945565b80156103d35780601f106103aa576101008083540402835291602001916103d3565b820191905f5260205f20905b8154815290600101906020018083116103b657829003601f168201915b5050505050905090565b5f806103e761086b565b90506103f4818585610872565b600191505092915050565b5f600254905090565b5f8061041261086b565b905061041f858285610a35565b61042a858585610ac0565b60019150509392505050565b5f6012905090565b5f610447610d2c565b905090565b5f8061045661086b565b905061047781858561046885896107e9565b61047291906119a2565b610872565b600191505092915050565b5f805f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20549050919050565b5f6104d182610de2565b9050919050565b5f6060805f805f60606104e9610e28565b6104f1610e63565b46305f801b5f67ffffffffffffffff8111156105105761050f6119d5565b5b60405190808252806020026020018201604052801561053e5781602001602082028036833780820191505090505b507f0f00000000000000000000000000000000000000000000000000000000000000959493929190965096509650965096509650965090919293949596565b60606004805461058c90611945565b80601f01602080910402602001604051908101604052809291908181526020018280546105b890611945565b80156106035780601f106105da57610100808354040283529160200191610603565b820191905f5260205f20905b8154815290600101906020018083116105e657829003601f168201915b5050505050905090565b5f8061061761086b565b90505f61062482866107e9565b905083811015610669576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161066090611a72565b60405180910390fd5b6106768286868403610872565b60019250505092915050565b5f8061068c61086b565b9050610699818585610ac0565b600191505092915050565b834211156106e957836040517f627913020000000000000000000000000000000000000000000000000000000081526004016106e0919061156e565b60405180910390fd5b5f7f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c98888886107178c610e9e565b8960405160200161072d96959493929190611a90565b6040516020818303038152906040528051906020012090505f61074f82610ef1565b90505f61075e82878787610f0a565b90508973ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff16146107d257808a6040517f4b800e460000000000000000000000000000000000000000000000000000000081526004016107c9929190611aef565b60405180910390fd5b6107dd8a8a8a610872565b50505050505050505050565b5f60015f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905092915050565b5f33905090565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff16036108e0576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016108d790611b86565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff160361094e576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161094590611c14565b60405180910390fd5b8060015f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055508173ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92583604051610a28919061156e565b60405180910390a3505050565b5f610a4084846107e9565b90507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8114610aba5781811015610aac576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610aa390611c7c565b60405180910390fd5b610ab98484848403610872565b5b50505050565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1603610b2e576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610b2590611d0a565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603610b9c576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610b9390611d98565b60405180910390fd5b610ba7838383610f38565b5f805f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905081811015610c2a576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610c2190611e26565b60405180910390fd5b8181035f808673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2081905550815f808573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f82825401925050819055508273ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef84604051610d13919061156e565b60405180910390a3610d26848484610f3d565b50505050565b5f7f000000000000000000000000d30ed79531d6c61c8b30a1c550d445a1fe60036673ffffffffffffffffffffffffffffffffffffffff163073ffffffffffffffffffffffffffffffffffffffff16148015610da757507f0000000000000000000000000000000000000000000000000000000000aa36a746145b15610dd4577f0030ad07e03c073f5bf419159da899f067339f8cfd3182af25198e0c764efb469050610ddf565b610ddc610f42565b90505b90565b5f60075f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20549050919050565b6060610e5e60057f67616e6a61636f696e2e7774660000000000000000000000000000000000000d610fd790919063ffffffff16565b905090565b6060610e9960067f3100000000000000000000000000000000000000000000000000000000000001610fd790919063ffffffff16565b905090565b5f60075f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f815480929190600101919050559050919050565b5f610f03610efd610d2c565b83611084565b9050919050565b5f805f80610f1a888888886110c4565b925092509250610f2a82826111ab565b829350505050949350505050565b505050565b505050565b5f7f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f7fc9d427473c54fd7a0f4f7aedafdd39641bb4653c7c3f8a19609124d7c5d271967fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc64630604051602001610fbc959493929190611e44565b60405160208183030381529060405280519060200120905090565b606060ff5f1b8314610ff357610fec8361130d565b905061107e565b818054610fff90611945565b80601f016020809104026020016040519081016040528092919081815260200182805461102b90611945565b80156110765780601f1061104d57610100808354040283529160200191611076565b820191905f5260205f20905b81548152906001019060200180831161105957829003601f168201915b505050505090505b92915050565b5f6040517f190100000000000000000000000000000000000000000000000000000000000081528360028201528260228201526042812091505092915050565b5f805f7f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0845f1c1115611100575f6003859250925092506111a1565b5f6001888888886040515f81526020016040526040516111239493929190611e95565b6020604051602081039080840390855afa158015611143573d5f803e3d5ffd5b5050506020604051035190505f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1603611194575f60015f801b935093509350506111a1565b805f805f1b935093509350505b9450945094915050565b5f60038111156111be576111bd611ed8565b5b8260038111156111d1576111d0611ed8565b5b031561130957600160038111156111eb576111ea611ed8565b5b8260038111156111fe576111fd611ed8565b5b03611235576040517ff645eedf00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6002600381111561124957611248611ed8565b5b82600381111561125c5761125b611ed8565b5b036112a057805f1c6040517ffce698f7000000000000000000000000000000000000000000000000000000008152600401611297919061156e565b60405180910390fd5b6003808111156112b3576112b2611ed8565b5b8260038111156112c6576112c5611ed8565b5b0361130857806040517fd78bce0c0000000000000000000000000000000000000000000000000000000081526004016112ff9190611623565b60405180910390fd5b5b5050565b60605f6113198361137f565b90505f602067ffffffffffffffff811115611337576113366119d5565b5b6040519080825280601f01601f1916602001820160405280156113695781602001600182028036833780820191505090505b5090508181528360208201528092505050919050565b5f8060ff835f1c169050601f8111156113c4576040517fb3512b0c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b80915050919050565b5f81519050919050565b5f82825260208201905092915050565b8281835e5f83830152505050565b5f601f19601f8301169050919050565b5f61140f826113cd565b61141981856113d7565b93506114298185602086016113e7565b611432816113f5565b840191505092915050565b5f6020820190508181035f8301526114558184611405565b905092915050565b5f80fd5b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f61148a82611461565b9050919050565b61149a81611480565b81146114a4575f80fd5b50565b5f813590506114b581611491565b92915050565b5f819050919050565b6114cd816114bb565b81146114d7575f80fd5b50565b5f813590506114e8816114c4565b92915050565b5f80604083850312156115045761150361145d565b5b5f611511858286016114a7565b9250506020611522858286016114da565b9150509250929050565b5f8115159050919050565b6115408161152c565b82525050565b5f6020820190506115595f830184611537565b92915050565b611568816114bb565b82525050565b5f6020820190506115815f83018461155f565b92915050565b5f805f6060848603121561159e5761159d61145d565b5b5f6115ab868287016114a7565b93505060206115bc868287016114a7565b92505060406115cd868287016114da565b9150509250925092565b5f60ff82169050919050565b6115ec816115d7565b82525050565b5f6020820190506116055f8301846115e3565b92915050565b5f819050919050565b61161d8161160b565b82525050565b5f6020820190506116365f830184611614565b92915050565b5f602082840312156116515761165061145d565b5b5f61165e848285016114a7565b91505092915050565b5f7fff0000000000000000000000000000000000000000000000000000000000000082169050919050565b61169b81611667565b82525050565b6116aa81611480565b82525050565b5f81519050919050565b5f82825260208201905092915050565b5f819050602082019050919050565b6116e2816114bb565b82525050565b5f6116f383836116d9565b60208301905092915050565b5f602082019050919050565b5f611715826116b0565b61171f81856116ba565b935061172a836116ca565b805f5b8381101561175a57815161174188826116e8565b975061174c836116ff565b92505060018101905061172d565b5085935050505092915050565b5f60e08201905061177a5f83018a611692565b818103602083015261178c8189611405565b905081810360408301526117a08188611405565b90506117af606083018761155f565b6117bc60808301866116a1565b6117c960a0830185611614565b81810360c08301526117db818461170b565b905098975050505050505050565b6117f2816115d7565b81146117fc575f80fd5b50565b5f8135905061180d816117e9565b92915050565b61181c8161160b565b8114611826575f80fd5b50565b5f8135905061183781611813565b92915050565b5f805f805f805f60e0888a0312156118585761185761145d565b5b5f6118658a828b016114a7565b97505060206118768a828b016114a7565b96505060406118878a828b016114da565b95505060606118988a828b016114da565b94505060806118a98a828b016117ff565b93505060a06118ba8a828b01611829565b92505060c06118cb8a828b01611829565b91505092959891949750929550565b5f80604083850312156118f0576118ef61145d565b5b5f6118fd858286016114a7565b925050602061190e858286016114a7565b9150509250929050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b5f600282049050600182168061195c57607f821691505b60208210810361196f5761196e611918565b5b50919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f6119ac826114bb565b91506119b7836114bb565b92508282019050808211156119cf576119ce611975565b5b92915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b7f45524332303a2064656372656173656420616c6c6f77616e63652062656c6f775f8201527f207a65726f000000000000000000000000000000000000000000000000000000602082015250565b5f611a5c6025836113d7565b9150611a6782611a02565b604082019050919050565b5f6020820190508181035f830152611a8981611a50565b9050919050565b5f60c082019050611aa35f830189611614565b611ab060208301886116a1565b611abd60408301876116a1565b611aca606083018661155f565b611ad7608083018561155f565b611ae460a083018461155f565b979650505050505050565b5f604082019050611b025f8301856116a1565b611b0f60208301846116a1565b9392505050565b7f45524332303a20617070726f76652066726f6d20746865207a65726f206164645f8201527f7265737300000000000000000000000000000000000000000000000000000000602082015250565b5f611b706024836113d7565b9150611b7b82611b16565b604082019050919050565b5f6020820190508181035f830152611b9d81611b64565b9050919050565b7f45524332303a20617070726f766520746f20746865207a65726f2061646472655f8201527f7373000000000000000000000000000000000000000000000000000000000000602082015250565b5f611bfe6022836113d7565b9150611c0982611ba4565b604082019050919050565b5f6020820190508181035f830152611c2b81611bf2565b9050919050565b7f45524332303a20696e73756666696369656e7420616c6c6f77616e63650000005f82015250565b5f611c66601d836113d7565b9150611c7182611c32565b602082019050919050565b5f6020820190508181035f830152611c9381611c5a565b9050919050565b7f45524332303a207472616e736665722066726f6d20746865207a65726f2061645f8201527f6472657373000000000000000000000000000000000000000000000000000000602082015250565b5f611cf46025836113d7565b9150611cff82611c9a565b604082019050919050565b5f6020820190508181035f830152611d2181611ce8565b9050919050565b7f45524332303a207472616e7366657220746f20746865207a65726f20616464725f8201527f6573730000000000000000000000000000000000000000000000000000000000602082015250565b5f611d826023836113d7565b9150611d8d82611d28565b604082019050919050565b5f6020820190508181035f830152611daf81611d76565b9050919050565b7f45524332303a207472616e7366657220616d6f756e74206578636565647320625f8201527f616c616e63650000000000000000000000000000000000000000000000000000602082015250565b5f611e106026836113d7565b9150611e1b82611db6565b604082019050919050565b5f6020820190508181035f830152611e3d81611e04565b9050919050565b5f60a082019050611e575f830188611614565b611e646020830187611614565b611e716040830186611614565b611e7e606083018561155f565b611e8b60808301846116a1565b9695505050505050565b5f608082019050611ea85f830187611614565b611eb560208301866115e3565b611ec26040830185611614565b611ecf6060830184611614565b95945050505050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602160045260245ffdfea26469706673582212205caa9bd37aca94b47df583bc9eb1c012f73225d3d4e0634bfbce04fcadf05b0664736f6c634300081a0033

[ Download: CSV Export  ]
[ Download: CSV Export  ]

A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.