Source Code
Overview
ETH Balance
0 ETH
More Info
ContractCreator
Multichain Info
N/A
Latest 1 internal transaction
Advanced mode:
Parent Transaction Hash | Block | From | To | |||
---|---|---|---|---|---|---|
5927788 | 202 days ago | Contract Creation | 0 ETH |
Loading...
Loading
Similar Match Source Code This contract matches the deployed Bytecode of the Source Code for Contract 0xB73fe202...10FDbc070 The constructor portion of the code might be different and could alter the actual behaviour of the contract
Contract Name:
L2OutputOracle
Compiler Version
v0.8.15+commit.e14f2714
Optimization Enabled:
Yes with 999999 runs
Other Settings:
london EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol"; import { ISemver } from "src/universal/ISemver.sol"; import { Types } from "src/libraries/Types.sol"; import { Constants } from "src/libraries/Constants.sol"; /// @custom:proxied /// @title L2OutputOracle /// @notice The L2OutputOracle contains an array of L2 state outputs, where each output is a /// commitment to the state of the L2 chain. Other contracts like the OptimismPortal use /// these outputs to verify information about the state of L2. contract L2OutputOracle is Initializable, ISemver { /// @notice The interval in L2 blocks at which checkpoints must be submitted. /// Although this is immutable, it can safely be modified by upgrading the /// implementation contract. /// Public getter is legacy and will be removed in the future. Use `submissionInterval` /// instead. /// @custom:legacy uint256 public immutable SUBMISSION_INTERVAL; /// @notice The time between L2 blocks in seconds. Once set, this value MUST NOT be modified. uint256 public immutable L2_BLOCK_TIME; /// @notice The address of the challenger. Can be updated via upgrade. This will be removed in the /// future, use `challenger` instead. /// @custom:legacy address public immutable CHALLENGER; /// @notice The address of the proposer. Can be updated via upgrade. This will be removed in the /// future, use `proposer` instead. /// @custom:legacy address public immutable PROPOSER; /// @notice The minimum time (in seconds) that must elapse before a withdrawal can be finalized. uint256 public immutable FINALIZATION_PERIOD_SECONDS; /// @notice The number of the first L2 block recorded in this contract. uint256 public startingBlockNumber; /// @notice The timestamp of the first L2 block recorded in this contract. uint256 public startingTimestamp; /// @notice An array of L2 output proposals. Types.OutputProposal[] internal l2Outputs; /// @notice Emitted when an output is proposed. /// @param outputRoot The output root. /// @param l2OutputIndex The index of the output in the l2Outputs array. /// @param l2BlockNumber The L2 block number of the output root. /// @param l1Timestamp The L1 timestamp when proposed. event OutputProposed( bytes32 indexed outputRoot, uint256 indexed l2OutputIndex, uint256 indexed l2BlockNumber, uint256 l1Timestamp ); /// @notice Emitted when outputs are deleted. /// @param prevNextOutputIndex Next L2 output index before the deletion. /// @param newNextOutputIndex Next L2 output index after the deletion. event OutputsDeleted(uint256 indexed prevNextOutputIndex, uint256 indexed newNextOutputIndex); /// @notice Semantic version. /// @custom:semver 1.7.0 string public constant version = "1.7.0"; /// @notice Constructs the L2OutputOracle contract. /// @param _submissionInterval Interval in blocks at which checkpoints must be submitted. /// @param _l2BlockTime The time per L2 block, in seconds. /// @param _startingBlockNumber The number of the first L2 block. /// @param _startingTimestamp The timestamp of the first L2 block. /// @param _proposer The address of the proposer. /// @param _challenger The address of the challenger. constructor( uint256 _submissionInterval, uint256 _l2BlockTime, uint256 _startingBlockNumber, uint256 _startingTimestamp, address _proposer, address _challenger, uint256 _finalizationPeriodSeconds ) { require(_l2BlockTime > 0, "L2OutputOracle: L2 block time must be greater than 0"); require(_submissionInterval > 0, "L2OutputOracle: submission interval must be greater than 0"); SUBMISSION_INTERVAL = _submissionInterval; L2_BLOCK_TIME = _l2BlockTime; PROPOSER = _proposer; CHALLENGER = _challenger; FINALIZATION_PERIOD_SECONDS = _finalizationPeriodSeconds; initialize({ _startingBlockNumber: _startingBlockNumber, _startingTimestamp: _startingTimestamp }); } /// @notice Initializer. /// @param _startingBlockNumber Block number for the first recoded L2 block. /// @param _startingTimestamp Timestamp for the first recoded L2 block. function initialize(uint256 _startingBlockNumber, uint256 _startingTimestamp) public initializer { require( _startingTimestamp <= block.timestamp, "L2OutputOracle: starting L2 timestamp must be less than current time" ); startingTimestamp = _startingTimestamp; startingBlockNumber = _startingBlockNumber; } /// @notice Getter for the challenger address. function challenger() external view returns (address) { return CHALLENGER; } /// @notice Getter for the PROPOSER address. function proposer() external view returns (address) { return PROPOSER; } /// @notice Getter for the SUBMISSION_INTERVAL. function submissionInterval() external view returns (uint256) { return SUBMISSION_INTERVAL; } /// @notice Getter for the L2_BLOCK_TIME. function l2BlockTime() external view returns (uint256) { return L2_BLOCK_TIME; } /// @notice Getter for the FINALIZATION_PERIOD_SECONDS. function finalizationPeriodSeconds() external view returns (uint256) { return FINALIZATION_PERIOD_SECONDS; } /// @notice Deletes all output proposals after and including the proposal that corresponds to /// the given output index. Only the challenger address can delete outputs. /// @param _l2OutputIndex Index of the first L2 output to be deleted. /// All outputs after this output will also be deleted. // solhint-disable-next-line ordering function deleteL2Outputs(uint256 _l2OutputIndex) external { require(msg.sender == CHALLENGER, "L2OutputOracle: only the challenger address can delete outputs"); // Make sure we're not *increasing* the length of the array. require( _l2OutputIndex < l2Outputs.length, "L2OutputOracle: cannot delete outputs after the latest output index" ); // Do not allow deleting any outputs that have already been finalized. require( block.timestamp - l2Outputs[_l2OutputIndex].timestamp < FINALIZATION_PERIOD_SECONDS, "L2OutputOracle: cannot delete outputs that have already been finalized" ); uint256 prevNextL2OutputIndex = nextOutputIndex(); // Use assembly to delete the array elements because Solidity doesn't allow it. assembly { sstore(l2Outputs.slot, _l2OutputIndex) } emit OutputsDeleted(prevNextL2OutputIndex, _l2OutputIndex); } /// @notice Accepts an outputRoot and the timestamp of the corresponding L2 block. /// The timestamp must be equal to the current value returned by `nextTimestamp()` in /// order to be accepted. This function may only be called by the Proposer. /// @param _outputRoot The L2 output of the checkpoint block. /// @param _l2BlockNumber The L2 block number that resulted in _outputRoot. /// @param _l1BlockHash A block hash which must be included in the current chain. /// @param _l1BlockNumber The block number with the specified block hash. function proposeL2Output( bytes32 _outputRoot, uint256 _l2BlockNumber, bytes32 _l1BlockHash, uint256 _l1BlockNumber ) external payable { require(msg.sender == PROPOSER, "L2OutputOracle: only the proposer address can propose new outputs"); require( _l2BlockNumber == nextBlockNumber(), "L2OutputOracle: block number must be equal to next expected block number" ); require( computeL2Timestamp(_l2BlockNumber) < block.timestamp, "L2OutputOracle: cannot propose L2 output in the future" ); require(_outputRoot != bytes32(0), "L2OutputOracle: L2 output proposal cannot be the zero hash"); if (_l1BlockHash != bytes32(0)) { // This check allows the proposer to propose an output based on a given L1 block, // without fear that it will be reorged out. // It will also revert if the blockheight provided is more than 256 blocks behind the // chain tip (as the hash will return as zero). This does open the door to a griefing // attack in which the proposer's submission is censored until the block is no longer // retrievable, if the proposer is experiencing this attack it can simply leave out the // blockhash value, and delay submission until it is confident that the L1 block is // finalized. require( blockhash(_l1BlockNumber) == _l1BlockHash, "L2OutputOracle: block hash does not match the hash at the expected height" ); } emit OutputProposed(_outputRoot, nextOutputIndex(), _l2BlockNumber, block.timestamp); l2Outputs.push( Types.OutputProposal({ outputRoot: _outputRoot, timestamp: uint128(block.timestamp), l2BlockNumber: uint128(_l2BlockNumber) }) ); } /// @notice Returns an output by index. Needed to return a struct instead of a tuple. /// @param _l2OutputIndex Index of the output to return. /// @return The output at the given index. function getL2Output(uint256 _l2OutputIndex) external view returns (Types.OutputProposal memory) { return l2Outputs[_l2OutputIndex]; } /// @notice Returns the index of the L2 output that checkpoints a given L2 block number. /// Uses a binary search to find the first output greater than or equal to the given /// block. /// @param _l2BlockNumber L2 block number to find a checkpoint for. /// @return Index of the first checkpoint that commits to the given L2 block number. function getL2OutputIndexAfter(uint256 _l2BlockNumber) public view returns (uint256) { // Make sure an output for this block number has actually been proposed. require( _l2BlockNumber <= latestBlockNumber(), "L2OutputOracle: cannot get output for a block that has not been proposed" ); // Make sure there's at least one output proposed. require(l2Outputs.length > 0, "L2OutputOracle: cannot get output as no outputs have been proposed yet"); // Find the output via binary search, guaranteed to exist. uint256 lo = 0; uint256 hi = l2Outputs.length; while (lo < hi) { uint256 mid = (lo + hi) / 2; if (l2Outputs[mid].l2BlockNumber < _l2BlockNumber) { lo = mid + 1; } else { hi = mid; } } return lo; } /// @notice Returns the L2 output proposal that checkpoints a given L2 block number. /// Uses a binary search to find the first output greater than or equal to the given /// block. /// @param _l2BlockNumber L2 block number to find a checkpoint for. /// @return First checkpoint that commits to the given L2 block number. function getL2OutputAfter(uint256 _l2BlockNumber) external view returns (Types.OutputProposal memory) { return l2Outputs[getL2OutputIndexAfter(_l2BlockNumber)]; } /// @notice Returns the number of outputs that have been proposed. /// Will revert if no outputs have been proposed yet. /// @return The number of outputs that have been proposed. function latestOutputIndex() external view returns (uint256) { return l2Outputs.length - 1; } /// @notice Returns the index of the next output to be proposed. /// @return The index of the next output to be proposed. function nextOutputIndex() public view returns (uint256) { return l2Outputs.length; } /// @notice Returns the block number of the latest submitted L2 output proposal. /// If no proposals been submitted yet then this function will return the starting /// block number. /// @return Latest submitted L2 block number. function latestBlockNumber() public view returns (uint256) { return l2Outputs.length == 0 ? startingBlockNumber : l2Outputs[l2Outputs.length - 1].l2BlockNumber; } /// @notice Computes the block number of the next L2 block that needs to be checkpointed. /// @return Next L2 block number. function nextBlockNumber() public view returns (uint256) { return latestBlockNumber() + SUBMISSION_INTERVAL; } /// @notice Returns the L2 timestamp corresponding to a given L2 block number. /// @param _l2BlockNumber The L2 block number of the target block. /// @return L2 timestamp of the given block. function computeL2Timestamp(uint256 _l2BlockNumber) public view returns (uint256) { return startingTimestamp + ((_l2BlockNumber - startingBlockNumber) * L2_BLOCK_TIME); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/Address.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ``` * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original * initialization step. This is essential to configure modules that are added through upgrades and that require * initialization. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized < type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @title ISemver /// @notice ISemver is a simple contract for ensuring that contracts are /// versioned using semantic versioning. interface ISemver { /// @notice Getter for the semantic version of the contract. This is not /// meant to be used onchain but instead meant to be used by offchain /// tooling. /// @return Semver contract version as a string. function version() external view returns (string memory); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @title Types /// @notice Contains various types used throughout the Optimism contract system. library Types { /// @notice OutputProposal represents a commitment to the L2 state. The timestamp is the L1 /// timestamp that the output root is posted. This timestamp is used to verify that the /// finalization period has passed since the output root was submitted. /// @custom:field outputRoot Hash of the L2 output. /// @custom:field timestamp Timestamp of the L1 block that the output root was submitted in. /// @custom:field l2BlockNumber L2 block number that the output corresponds to. struct OutputProposal { bytes32 outputRoot; uint128 timestamp; uint128 l2BlockNumber; } /// @notice Struct representing the elements that are hashed together to generate an output root /// which itself represents a snapshot of the L2 state. /// @custom:field version Version of the output root. /// @custom:field stateRoot Root of the state trie at the block of this output. /// @custom:field messagePasserStorageRoot Root of the message passer storage trie. /// @custom:field latestBlockhash Hash of the block this output was generated from. struct OutputRootProof { bytes32 version; bytes32 stateRoot; bytes32 messagePasserStorageRoot; bytes32 latestBlockhash; } /// @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end /// user (as opposed to a system deposit transaction generated by the system). /// @custom:field from Address of the sender of the transaction. /// @custom:field to Address of the recipient of the transaction. /// @custom:field isCreation True if the transaction is a contract creation. /// @custom:field value Value to send to the recipient. /// @custom:field mint Amount of ETH to mint. /// @custom:field gasLimit Gas limit of the transaction. /// @custom:field data Data of the transaction. /// @custom:field l1BlockHash Hash of the block the transaction was submitted in. /// @custom:field logIndex Index of the log in the block the transaction was submitted in. struct UserDepositTransaction { address from; address to; bool isCreation; uint256 value; uint256 mint; uint64 gasLimit; bytes data; bytes32 l1BlockHash; uint256 logIndex; } /// @notice Struct representing a withdrawal transaction. /// @custom:field nonce Nonce of the withdrawal transaction /// @custom:field sender Address of the sender of the transaction. /// @custom:field target Address of the recipient of the transaction. /// @custom:field value Value to send to the recipient. /// @custom:field gasLimit Gas limit of the transaction. /// @custom:field data Data of the transaction. struct WithdrawalTransaction { uint256 nonce; address sender; address target; uint256 value; uint256 gasLimit; bytes data; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { ResourceMetering } from "../L1/ResourceMetering.sol"; /// @title Constants /// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just /// the stuff used in multiple contracts. Constants that only apply to a single contract /// should be defined in that contract instead. library Constants { /// @notice Special address to be used as the tx origin for gas estimation calls in the /// OptimismPortal and CrossDomainMessenger calls. You only need to use this address if /// the minimum gas limit specified by the user is not actually enough to execute the /// given message and you're attempting to estimate the actual necessary gas limit. We /// use address(1) because it's the ecrecover precompile and therefore guaranteed to /// never have any code on any EVM chain. address internal constant ESTIMATION_ADDRESS = address(1); /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the /// CrossDomainMessenger contracts before an actual sender is set. This value is /// non-zero to reduce the gas cost of message passing transactions. address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD; /// @notice The storage slot that holds the address of a proxy implementation. /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)` bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /// @notice The storage slot that holds the address of the owner. /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)` bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /// @notice Returns the default values for the ResourceConfig. These are the recommended values /// for a production network. function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) { ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({ maxResourceLimit: 20_000_000, elasticityMultiplier: 10, baseFeeMaxChangeDenominator: 8, minimumBaseFee: 1 gwei, systemTxMaxGas: 1_000_000, maximumBaseFee: type(uint128).max }); return config; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol"; import { Math } from "@openzeppelin/contracts/utils/math/Math.sol"; import { Burn } from "src/libraries/Burn.sol"; import { Arithmetic } from "src/libraries/Arithmetic.sol"; /// @custom:upgradeable /// @title ResourceMetering /// @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing /// updates automatically based on current demand. abstract contract ResourceMetering is Initializable { /// @notice Represents the various parameters that control the way in which resources are /// metered. Corresponds to the EIP-1559 resource metering system. /// @custom:field prevBaseFee Base fee from the previous block(s). /// @custom:field prevBoughtGas Amount of gas bought so far in the current block. /// @custom:field prevBlockNum Last block number that the base fee was updated. struct ResourceParams { uint128 prevBaseFee; uint64 prevBoughtGas; uint64 prevBlockNum; } /// @notice Represents the configuration for the EIP-1559 based curve for the deposit gas /// market. These values should be set with care as it is possible to set them in /// a way that breaks the deposit gas market. The target resource limit is defined as /// maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a /// single word. There is additional space for additions in the future. /// @custom:field maxResourceLimit Represents the maximum amount of deposit gas that /// can be purchased per block. /// @custom:field elasticityMultiplier Determines the target resource limit along with /// the resource limit. /// @custom:field baseFeeMaxChangeDenominator Determines max change on fee per block. /// @custom:field minimumBaseFee The min deposit base fee, it is clamped to this /// value. /// @custom:field systemTxMaxGas The amount of gas supplied to the system /// transaction. This should be set to the same /// number that the op-node sets as the gas limit /// for the system transaction. /// @custom:field maximumBaseFee The max deposit base fee, it is clamped to this /// value. struct ResourceConfig { uint32 maxResourceLimit; uint8 elasticityMultiplier; uint8 baseFeeMaxChangeDenominator; uint32 minimumBaseFee; uint32 systemTxMaxGas; uint128 maximumBaseFee; } /// @notice EIP-1559 style gas parameters. ResourceParams public params; /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades. uint256[48] private __gap; /// @notice Meters access to a function based an amount of a requested resource. /// @param _amount Amount of the resource requested. modifier metered(uint64 _amount) { // Record initial gas amount so we can refund for it later. uint256 initialGas = gasleft(); // Run the underlying function. _; // Run the metering function. _metered(_amount, initialGas); } /// @notice An internal function that holds all of the logic for metering a resource. /// @param _amount Amount of the resource requested. /// @param _initialGas The amount of gas before any modifier execution. function _metered(uint64 _amount, uint256 _initialGas) internal { // Update block number and base fee if necessary. uint256 blockDiff = block.number - params.prevBlockNum; ResourceConfig memory config = _resourceConfig(); int256 targetResourceLimit = int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier)); if (blockDiff > 0) { // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate // at which deposits can be created and therefore limit the potential for deposits to // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes. int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit; int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta) / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator))); // Update base fee by adding the base fee delta and clamp the resulting value between // min and max. int256 newBaseFee = Arithmetic.clamp({ _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta, _min: int256(uint256(config.minimumBaseFee)), _max: int256(uint256(config.maximumBaseFee)) }); // If we skipped more than one block, we also need to account for every empty block. // Empty block means there was no demand for deposits in that block, so we should // reflect this lack of demand in the fee. if (blockDiff > 1) { // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator) // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value // between min and max. newBaseFee = Arithmetic.clamp({ _value: Arithmetic.cdexp({ _coefficient: newBaseFee, _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)), _exponent: int256(blockDiff - 1) }), _min: int256(uint256(config.minimumBaseFee)), _max: int256(uint256(config.maximumBaseFee)) }); } // Update new base fee, reset bought gas, and update block number. params.prevBaseFee = uint128(uint256(newBaseFee)); params.prevBoughtGas = 0; params.prevBlockNum = uint64(block.number); } // Make sure we can actually buy the resource amount requested by the user. params.prevBoughtGas += _amount; require( int256(uint256(params.prevBoughtGas)) <= int256(uint256(config.maxResourceLimit)), "ResourceMetering: cannot buy more gas than available gas limit" ); // Determine the amount of ETH to be paid. uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee); // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei // during any 1 day period in the last 5 years, so should be fine. uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei); // Give the user a refund based on the amount of gas they used to do all of the work up to // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts // effectively like a dynamic stipend (with a minimum value). uint256 usedGas = _initialGas - gasleft(); if (gasCost > usedGas) { Burn.gas(gasCost - usedGas); } } /// @notice Virtual function that returns the resource config. /// Contracts that inherit this contract must implement this function. /// @return ResourceConfig function _resourceConfig() internal virtual returns (ResourceConfig memory); /// @notice Sets initial resource parameter values. /// This function must either be called by the initializer function of an upgradeable /// child contract. // solhint-disable-next-line func-name-mixedcase function __ResourceMetering_init() internal onlyInitializing { params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) }); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a >= b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv( uint256 x, uint256 y, uint256 denominator, Rounding rounding ) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`. // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`. // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a // good first aproximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1; uint256 x = a; if (x >> 128 > 0) { x >>= 128; result <<= 64; } if (x >> 64 > 0) { x >>= 64; result <<= 32; } if (x >> 32 > 0) { x >>= 32; result <<= 16; } if (x >> 16 > 0) { x >>= 16; result <<= 8; } if (x >> 8 > 0) { x >>= 8; result <<= 4; } if (x >> 4 > 0) { x >>= 4; result <<= 2; } if (x >> 2 > 0) { result <<= 1; } // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { uint256 result = sqrt(a); if (rounding == Rounding.Up && result * result < a) { result += 1; } return result; } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; /// @title Burn /// @notice Utilities for burning stuff. library Burn { /// @notice Burns a given amount of ETH. /// @param _amount Amount of ETH to burn. function eth(uint256 _amount) internal { new Burner{ value: _amount }(); } /// @notice Burns a given amount of gas. /// @param _amount Amount of gas to burn. function gas(uint256 _amount) internal view { uint256 i = 0; uint256 initialGas = gasleft(); while (initialGas - gasleft() < _amount) { ++i; } } } /// @title Burner /// @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to /// the contract from the circulating supply. Self-destructing is the only way to remove ETH /// from the circulating supply. contract Burner { constructor() payable { selfdestruct(payable(address(this))); } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol"; import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol"; /// @title Arithmetic /// @notice Even more math than before. library Arithmetic { /// @notice Clamps a value between a minimum and maximum. /// @param _value The value to clamp. /// @param _min The minimum value. /// @param _max The maximum value. /// @return The clamped value. function clamp(int256 _value, int256 _min, int256 _max) internal pure returns (int256) { return SignedMath.min(SignedMath.max(_value, _min), _max); } /// @notice (c)oefficient (d)enominator (exp)onentiation function. /// Returns the result of: c * (1 - 1/d)^exp. /// @param _coefficient Coefficient of the function. /// @param _denominator Fractional denominator. /// @param _exponent Power function exponent. /// @return Result of c * (1 - 1/d)^exp. function cdexp(int256 _coefficient, int256 _denominator, int256 _exponent) internal pure returns (int256) { return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.0; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a >= b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.0; /// @notice Arithmetic library with operations for fixed-point numbers. /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol) library FixedPointMathLib { /*////////////////////////////////////////////////////////////// SIMPLIFIED FIXED POINT OPERATIONS //////////////////////////////////////////////////////////////*/ uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s. function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down. } function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up. } function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down. } function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up. } function powWad(int256 x, int256 y) internal pure returns (int256) { // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y) return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0. } function expWad(int256 x) internal pure returns (int256 r) { unchecked { // When the result is < 0.5 we return zero. This happens when // x <= floor(log(0.5e18) * 1e18) ~ -42e18 if (x <= -42139678854452767551) return 0; // When the result is > (2**255 - 1) / 1e18 we can not represent it as an // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135. if (x >= 135305999368893231589) revert("EXP_OVERFLOW"); // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96 // for more intermediate precision and a binary basis. This base conversion // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78. x = (x << 78) / 5**18; // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers // of two such that exp(x) = exp(x') * 2**k, where k is an integer. // Solving this gives k = round(x / log(2)) and x' = x - k * log(2). int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96; x = x - k * 54916777467707473351141471128; // k is in the range [-61, 195]. // Evaluate using a (6, 7)-term rational approximation. // p is made monic, we'll multiply by a scale factor later. int256 y = x + 1346386616545796478920950773328; y = ((y * x) >> 96) + 57155421227552351082224309758442; int256 p = y + x - 94201549194550492254356042504812; p = ((p * y) >> 96) + 28719021644029726153956944680412240; p = p * x + (4385272521454847904659076985693276 << 96); // We leave p in 2**192 basis so we don't need to scale it back up for the division. int256 q = x - 2855989394907223263936484059900; q = ((q * x) >> 96) + 50020603652535783019961831881945; q = ((q * x) >> 96) - 533845033583426703283633433725380; q = ((q * x) >> 96) + 3604857256930695427073651918091429; q = ((q * x) >> 96) - 14423608567350463180887372962807573; q = ((q * x) >> 96) + 26449188498355588339934803723976023; assembly { // Div in assembly because solidity adds a zero check despite the unchecked. // The q polynomial won't have zeros in the domain as all its roots are complex. // No scaling is necessary because p is already 2**96 too large. r := sdiv(p, q) } // r should be in the range (0.09, 0.25) * 2**96. // We now need to multiply r by: // * the scale factor s = ~6.031367120. // * the 2**k factor from the range reduction. // * the 1e18 / 2**96 factor for base conversion. // We do this all at once, with an intermediate result in 2**213 // basis, so the final right shift is always by a positive amount. r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k)); } } function lnWad(int256 x) internal pure returns (int256 r) { unchecked { require(x > 0, "UNDEFINED"); // We want to convert x from 10**18 fixed point to 2**96 fixed point. // We do this by multiplying by 2**96 / 10**18. But since // ln(x * C) = ln(x) + ln(C), we can simply do nothing here // and add ln(2**96 / 10**18) at the end. // Reduce range of x to (1, 2) * 2**96 // ln(2^k * x) = k * ln(2) + ln(x) int256 k = int256(log2(uint256(x))) - 96; x <<= uint256(159 - k); x = int256(uint256(x) >> 159); // Evaluate using a (8, 8)-term rational approximation. // p is made monic, we will multiply by a scale factor later. int256 p = x + 3273285459638523848632254066296; p = ((p * x) >> 96) + 24828157081833163892658089445524; p = ((p * x) >> 96) + 43456485725739037958740375743393; p = ((p * x) >> 96) - 11111509109440967052023855526967; p = ((p * x) >> 96) - 45023709667254063763336534515857; p = ((p * x) >> 96) - 14706773417378608786704636184526; p = p * x - (795164235651350426258249787498 << 96); // We leave p in 2**192 basis so we don't need to scale it back up for the division. // q is monic by convention. int256 q = x + 5573035233440673466300451813936; q = ((q * x) >> 96) + 71694874799317883764090561454958; q = ((q * x) >> 96) + 283447036172924575727196451306956; q = ((q * x) >> 96) + 401686690394027663651624208769553; q = ((q * x) >> 96) + 204048457590392012362485061816622; q = ((q * x) >> 96) + 31853899698501571402653359427138; q = ((q * x) >> 96) + 909429971244387300277376558375; assembly { // Div in assembly because solidity adds a zero check despite the unchecked. // The q polynomial is known not to have zeros in the domain. // No scaling required because p is already 2**96 too large. r := sdiv(p, q) } // r is in the range (0, 0.125) * 2**96 // Finalization, we need to: // * multiply by the scale factor s = 5.549… // * add ln(2**96 / 10**18) // * add k * ln(2) // * multiply by 10**18 / 2**96 = 5**18 >> 78 // mul s * 5e18 * 2**96, base is now 5**18 * 2**192 r *= 1677202110996718588342820967067443963516166; // add ln(2) * k * 5e18 * 2**192 r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k; // add ln(2**96 / 10**18) * 5e18 * 2**192 r += 600920179829731861736702779321621459595472258049074101567377883020018308; // base conversion: mul 2**18 / 2**192 r >>= 174; } } /*////////////////////////////////////////////////////////////// LOW LEVEL FIXED POINT OPERATIONS //////////////////////////////////////////////////////////////*/ function mulDivDown( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 z) { assembly { // Store x * y in z for now. z := mul(x, y) // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y)) if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) { revert(0, 0) } // Divide z by the denominator. z := div(z, denominator) } } function mulDivUp( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 z) { assembly { // Store x * y in z for now. z := mul(x, y) // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y)) if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) { revert(0, 0) } // First, divide z - 1 by the denominator and add 1. // We allow z - 1 to underflow if z is 0, because we multiply the // end result by 0 if z is zero, ensuring we return 0 if z is zero. z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1)) } } function rpow( uint256 x, uint256 n, uint256 scalar ) internal pure returns (uint256 z) { assembly { switch x case 0 { switch n case 0 { // 0 ** 0 = 1 z := scalar } default { // 0 ** n = 0 z := 0 } } default { switch mod(n, 2) case 0 { // If n is even, store scalar in z for now. z := scalar } default { // If n is odd, store x in z for now. z := x } // Shifting right by 1 is like dividing by 2. let half := shr(1, scalar) for { // Shift n right by 1 before looping to halve it. n := shr(1, n) } n { // Shift n right by 1 each iteration to halve it. n := shr(1, n) } { // Revert immediately if x ** 2 would overflow. // Equivalent to iszero(eq(div(xx, x), x)) here. if shr(128, x) { revert(0, 0) } // Store x squared. let xx := mul(x, x) // Round to the nearest number. let xxRound := add(xx, half) // Revert if xx + half overflowed. if lt(xxRound, xx) { revert(0, 0) } // Set x to scaled xxRound. x := div(xxRound, scalar) // If n is even: if mod(n, 2) { // Compute z * x. let zx := mul(z, x) // If z * x overflowed: if iszero(eq(div(zx, x), z)) { // Revert if x is non-zero. if iszero(iszero(x)) { revert(0, 0) } } // Round to the nearest number. let zxRound := add(zx, half) // Revert if zx + half overflowed. if lt(zxRound, zx) { revert(0, 0) } // Return properly scaled zxRound. z := div(zxRound, scalar) } } } } } /*////////////////////////////////////////////////////////////// GENERAL NUMBER UTILITIES //////////////////////////////////////////////////////////////*/ function sqrt(uint256 x) internal pure returns (uint256 z) { assembly { let y := x // We start y at x, which will help us make our initial estimate. z := 181 // The "correct" value is 1, but this saves a multiplication later. // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically. // We check y >= 2^(k + 8) but shift right by k bits // each branch to ensure that if x >= 256, then y >= 256. if iszero(lt(y, 0x10000000000000000000000000000000000)) { y := shr(128, y) z := shl(64, z) } if iszero(lt(y, 0x1000000000000000000)) { y := shr(64, y) z := shl(32, z) } if iszero(lt(y, 0x10000000000)) { y := shr(32, y) z := shl(16, z) } if iszero(lt(y, 0x1000000)) { y := shr(16, y) z := shl(8, z) } // Goal was to get z*z*y within a small factor of x. More iterations could // get y in a tighter range. Currently, we will have y in [256, 256*2^16). // We ensured y >= 256 so that the relative difference between y and y+1 is small. // That's not possible if x < 256 but we can just verify those cases exhaustively. // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256. // Correctness can be checked exhaustively for x < 256, so we assume y >= 256. // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps. // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256. // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18. // There is no overflow risk here since y < 2^136 after the first branch above. z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181. // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough. z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) // If x+1 is a perfect square, the Babylonian method cycles between // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor. // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case. // If you don't care whether the floor or ceil square root is returned, you can remove this statement. z := sub(z, lt(div(x, z), z)) } } function log2(uint256 x) internal pure returns (uint256 r) { require(x > 0, "UNDEFINED"); assembly { r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(r, shl(3, lt(0xff, shr(r, x)))) r := or(r, shl(2, lt(0xf, shr(r, x)))) r := or(r, shl(1, lt(0x3, shr(r, x)))) r := or(r, lt(0x1, shr(r, x))) } } }
{ "remappings": [ "@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/", "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/", "@rari-capital/solmate/=lib/solmate/", "@cwia/=lib/clones-with-immutable-args/src/", "forge-std/=lib/forge-std/src/", "ds-test/=lib/forge-std/lib/ds-test/src/", "safe-contracts/=lib/safe-contracts/contracts/", "clones-with-immutable-args/=lib/clones-with-immutable-args/src/", "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/", "openzeppelin-contracts/=lib/openzeppelin-contracts/", "solmate/=lib/solmate/src/" ], "optimizer": { "enabled": true, "runs": 999999 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "none" }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "london", "libraries": {} }
[{"inputs":[{"internalType":"uint256","name":"_submissionInterval","type":"uint256"},{"internalType":"uint256","name":"_l2BlockTime","type":"uint256"},{"internalType":"uint256","name":"_startingBlockNumber","type":"uint256"},{"internalType":"uint256","name":"_startingTimestamp","type":"uint256"},{"internalType":"address","name":"_proposer","type":"address"},{"internalType":"address","name":"_challenger","type":"address"},{"internalType":"uint256","name":"_finalizationPeriodSeconds","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint8","name":"version","type":"uint8"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"outputRoot","type":"bytes32"},{"indexed":true,"internalType":"uint256","name":"l2OutputIndex","type":"uint256"},{"indexed":true,"internalType":"uint256","name":"l2BlockNumber","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"l1Timestamp","type":"uint256"}],"name":"OutputProposed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"prevNextOutputIndex","type":"uint256"},{"indexed":true,"internalType":"uint256","name":"newNextOutputIndex","type":"uint256"}],"name":"OutputsDeleted","type":"event"},{"inputs":[],"name":"CHALLENGER","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"FINALIZATION_PERIOD_SECONDS","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"L2_BLOCK_TIME","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PROPOSER","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SUBMISSION_INTERVAL","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"challenger","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_l2BlockNumber","type":"uint256"}],"name":"computeL2Timestamp","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_l2OutputIndex","type":"uint256"}],"name":"deleteL2Outputs","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"finalizationPeriodSeconds","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_l2OutputIndex","type":"uint256"}],"name":"getL2Output","outputs":[{"components":[{"internalType":"bytes32","name":"outputRoot","type":"bytes32"},{"internalType":"uint128","name":"timestamp","type":"uint128"},{"internalType":"uint128","name":"l2BlockNumber","type":"uint128"}],"internalType":"struct Types.OutputProposal","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_l2BlockNumber","type":"uint256"}],"name":"getL2OutputAfter","outputs":[{"components":[{"internalType":"bytes32","name":"outputRoot","type":"bytes32"},{"internalType":"uint128","name":"timestamp","type":"uint128"},{"internalType":"uint128","name":"l2BlockNumber","type":"uint128"}],"internalType":"struct Types.OutputProposal","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_l2BlockNumber","type":"uint256"}],"name":"getL2OutputIndexAfter","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_startingBlockNumber","type":"uint256"},{"internalType":"uint256","name":"_startingTimestamp","type":"uint256"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"l2BlockTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"latestBlockNumber","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"latestOutputIndex","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"nextBlockNumber","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"nextOutputIndex","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_outputRoot","type":"bytes32"},{"internalType":"uint256","name":"_l2BlockNumber","type":"uint256"},{"internalType":"bytes32","name":"_l1BlockHash","type":"bytes32"},{"internalType":"uint256","name":"_l1BlockNumber","type":"uint256"}],"name":"proposeL2Output","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"proposer","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"startingBlockNumber","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"startingTimestamp","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"submissionInterval","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"version","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"}]
Deployed Bytecode
0x60806040526004361061018a5760003560e01c806393991af3116100d6578063cf8e5cf01161007f578063e1a41bcf11610059578063e1a41bcf14610526578063e4a3011614610559578063f4daa2911461057957600080fd5b8063cf8e5cf0146104d1578063d1de856c146104f1578063dcec33481461051157600080fd5b8063a8e4fb90116100b0578063a8e4fb9014610437578063bffa7f0f1461046a578063ce5db8d61461049e57600080fd5b806393991af3146103955780639aaab648146103c8578063a25ae557146103db57600080fd5b80636abcf563116101385780637f006420116101125780637f0064201461033d578063887862721461035d57806389c44cbb1461037357600080fd5b80636abcf563146102de5780636b4d98dd146102f357806370872aa51461032757600080fd5b8063534db0e211610169578063534db0e21461021f57806354fd4d501461027357806369f16eec146102c957600080fd5b80622134cc1461018f5780634599c788146101d6578063529933df146101eb575b600080fd5b34801561019b57600080fd5b506101c37f000000000000000000000000000000000000000000000000000000000000000281565b6040519081526020015b60405180910390f35b3480156101e257600080fd5b506101c36105ad565b3480156101f757600080fd5b506101c37f000000000000000000000000000000000000000000000000000000000000007881565b34801561022b57600080fd5b507f0000000000000000000000001040e212e6a1c2dab248c7bde5647868a83761435b60405173ffffffffffffffffffffffffffffffffffffffff90911681526020016101cd565b34801561027f57600080fd5b506102bc6040518060400160405280600581526020017f312e372e3000000000000000000000000000000000000000000000000000000081525081565b6040516101cd9190611358565b3480156102d557600080fd5b506101c3610620565b3480156102ea57600080fd5b506003546101c3565b3480156102ff57600080fd5b5061024e7f0000000000000000000000001040e212e6a1c2dab248c7bde5647868a837614381565b34801561033357600080fd5b506101c360015481565b34801561034957600080fd5b506101c36103583660046113cb565b610632565b34801561036957600080fd5b506101c360025481565b34801561037f57600080fd5b5061039361038e3660046113cb565b61084b565b005b3480156103a157600080fd5b507f00000000000000000000000000000000000000000000000000000000000000026101c3565b6103936103d63660046113e4565b610b21565b3480156103e757600080fd5b506103fb6103f63660046113cb565b610fa0565b60408051825181526020808401516fffffffffffffffffffffffffffffffff9081169183019190915292820151909216908201526060016101cd565b34801561044357600080fd5b507f000000000000000000000000cf87dcadcd9002fd7fee9789bbbe435ececf6fac61024e565b34801561047657600080fd5b5061024e7f000000000000000000000000cf87dcadcd9002fd7fee9789bbbe435ececf6fac81565b3480156104aa57600080fd5b507f000000000000000000000000000000000000000000000000000000000000000c6101c3565b3480156104dd57600080fd5b506103fb6104ec3660046113cb565b611034565b3480156104fd57600080fd5b506101c361050c3660046113cb565b61106c565b34801561051d57600080fd5b506101c36110ba565b34801561053257600080fd5b507f00000000000000000000000000000000000000000000000000000000000000786101c3565b34801561056557600080fd5b50610393610574366004611416565b6110ef565b34801561058557600080fd5b506101c37f000000000000000000000000000000000000000000000000000000000000000c81565b6003546000901561061757600380546105c890600190611467565b815481106105d8576105d861147e565b600091825260209091206002909102016001015470010000000000000000000000000000000090046fffffffffffffffffffffffffffffffff16919050565b6001545b905090565b60035460009061061b90600190611467565b600061063c6105ad565b8211156106f6576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152604860248201527f4c324f75747075744f7261636c653a2063616e6e6f7420676574206f7574707560448201527f7420666f72206120626c6f636b207468617420686173206e6f74206265656e2060648201527f70726f706f736564000000000000000000000000000000000000000000000000608482015260a4015b60405180910390fd5b6003546107ab576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152604660248201527f4c324f75747075744f7261636c653a2063616e6e6f7420676574206f7574707560448201527f74206173206e6f206f7574707574732068617665206265656e2070726f706f7360648201527f6564207965740000000000000000000000000000000000000000000000000000608482015260a4016106ed565b6003546000905b8082101561084457600060026107c883856114ad565b6107d291906114c5565b905084600382815481106107e8576107e861147e565b600091825260209091206002909102016001015470010000000000000000000000000000000090046fffffffffffffffffffffffffffffffff16101561083a576108338160016114ad565b925061083e565b8091505b506107b2565b5092915050565b3373ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000001040e212e6a1c2dab248c7bde5647868a83761431614610910576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603e60248201527f4c324f75747075744f7261636c653a206f6e6c7920746865206368616c6c656e60448201527f67657220616464726573732063616e2064656c657465206f757470757473000060648201526084016106ed565b60035481106109c7576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152604360248201527f4c324f75747075744f7261636c653a2063616e6e6f742064656c657465206f7560448201527f747075747320616674657220746865206c6174657374206f757470757420696e60648201527f6465780000000000000000000000000000000000000000000000000000000000608482015260a4016106ed565b7f000000000000000000000000000000000000000000000000000000000000000c600382815481106109fb576109fb61147e565b6000918252602090912060016002909202010154610a2b906fffffffffffffffffffffffffffffffff1642611467565b10610ade576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152604660248201527f4c324f75747075744f7261636c653a2063616e6e6f742064656c657465206f7560448201527f74707574732074686174206861766520616c7265616479206265656e2066696e60648201527f616c697a65640000000000000000000000000000000000000000000000000000608482015260a4016106ed565b6000610ae960035490565b90508160035581817f4ee37ac2c786ec85e87592d3c5c8a1dd66f8496dda3f125d9ea8ca5f657629b660405160405180910390a35050565b3373ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000cf87dcadcd9002fd7fee9789bbbe435ececf6fac1614610c0c576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152604160248201527f4c324f75747075744f7261636c653a206f6e6c79207468652070726f706f736560448201527f7220616464726573732063616e2070726f706f7365206e6577206f757470757460648201527f7300000000000000000000000000000000000000000000000000000000000000608482015260a4016106ed565b610c146110ba565b8314610cc8576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152604860248201527f4c324f75747075744f7261636c653a20626c6f636b206e756d626572206d757360448201527f7420626520657175616c20746f206e65787420657870656374656420626c6f6360648201527f6b206e756d626572000000000000000000000000000000000000000000000000608482015260a4016106ed565b42610cd28461106c565b10610d5f576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603660248201527f4c324f75747075744f7261636c653a2063616e6e6f742070726f706f7365204c60448201527f32206f757470757420696e20746865206675747572650000000000000000000060648201526084016106ed565b83610dec576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603a60248201527f4c324f75747075744f7261636c653a204c32206f75747075742070726f706f7360448201527f616c2063616e6e6f7420626520746865207a65726f206861736800000000000060648201526084016106ed565b8115610ea85781814014610ea8576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152604960248201527f4c324f75747075744f7261636c653a20626c6f636b206861736820646f65732060448201527f6e6f74206d61746368207468652068617368206174207468652065787065637460648201527f6564206865696768740000000000000000000000000000000000000000000000608482015260a4016106ed565b82610eb260035490565b857fa7aaf2512769da4e444e3de247be2564225c2e7a8f74cfe528e46e17d24868e242604051610ee491815260200190565b60405180910390a45050604080516060810182529283526fffffffffffffffffffffffffffffffff4281166020850190815292811691840191825260038054600181018255600091909152935160029094027fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b810194909455915190518216700100000000000000000000000000000000029116177fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85c90910155565b604080516060810182526000808252602082018190529181019190915260038281548110610fd057610fd061147e565b600091825260209182902060408051606081018252600290930290910180548352600101546fffffffffffffffffffffffffffffffff8082169484019490945270010000000000000000000000000000000090049092169181019190915292915050565b6040805160608101825260008082526020820181905291810191909152600361105c83610632565b81548110610fd057610fd061147e565b60007f00000000000000000000000000000000000000000000000000000000000000026001548361109d9190611467565b6110a79190611500565b6002546110b491906114ad565b92915050565b60007f00000000000000000000000000000000000000000000000000000000000000786110e56105ad565b61061b91906114ad565b600054610100900460ff161580801561110f5750600054600160ff909116105b806111295750303b158015611129575060005460ff166001145b6111b5576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602e60248201527f496e697469616c697a61626c653a20636f6e747261637420697320616c72656160448201527f647920696e697469616c697a656400000000000000000000000000000000000060648201526084016106ed565b600080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00166001179055801561121357600080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00ff166101001790555b428211156112ca576040517f08c379a0000000000000000000000000000000000000000000000000000000008152602060048201526044602482018190527f4c324f75747075744f7261636c653a207374617274696e67204c322074696d65908201527f7374616d70206d757374206265206c657373207468616e2063757272656e742060648201527f74696d6500000000000000000000000000000000000000000000000000000000608482015260a4016106ed565b60028290556001839055801561133757600080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00ff169055604051600181527f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb38474024989060200160405180910390a15b505050565b73ffffffffffffffffffffffffffffffffffffffff163b151590565b600060208083528351808285015260005b8181101561138557858101830151858201604001528201611369565b81811115611397576000604083870101525b50601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe016929092016040019392505050565b6000602082840312156113dd57600080fd5b5035919050565b600080600080608085870312156113fa57600080fd5b5050823594602084013594506040840135936060013592509050565b6000806040838503121561142957600080fd5b50508035926020909101359150565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b60008282101561147957611479611438565b500390565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b600082198211156114c0576114c0611438565b500190565b6000826114fb577f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b500490565b6000817fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff048311821515161561153857611538611438565b50029056fea164736f6c634300080f000a
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.