Sepolia Testnet

Contract

0xAcB6c70b2AF91dDd83Dc8e46B3Aa9e2d1502fA3f

Overview

ETH Balance

1,234.952669408239638619 ETH

Token Holdings

Multichain Info

N/A
Transaction Hash
Method
Block
From
To
Request63009762024-07-13 5:48:482 hrs ago1720849728IN
0xAcB6c70b...d1502fA3f
0.02 ETH0.000523365.11621095
Request63006382024-07-13 4:35:124 hrs ago1720845312IN
0xAcB6c70b...d1502fA3f
0.01 ETH0.0013342213.04286645
Request62998262024-07-13 1:33:127 hrs ago1720834392IN
0xAcB6c70b...d1502fA3f
0.1 ETH0.000452994.42836779
Request62996312024-07-13 0:50:007 hrs ago1720831800IN
0xAcB6c70b...d1502fA3f
0.1 ETH0.000534285.2229867
Request62996232024-07-13 0:48:007 hrs ago1720831680IN
0xAcB6c70b...d1502fA3f
0.01 ETH0.000349293.41458915
Request62992502024-07-12 23:21:249 hrs ago1720826484IN
0xAcB6c70b...d1502fA3f
0.1 ETH0.000166551.62815821
Request62989492024-07-12 22:14:0010 hrs ago1720822440IN
0xAcB6c70b...d1502fA3f
0.1 ETH0.000253963.72954552
Request62988822024-07-12 21:58:3610 hrs ago1720821516IN
0xAcB6c70b...d1502fA3f
0.0006 ETH0.000724937.08672105
Request62986142024-07-12 21:00:0011 hrs ago1720818000IN
0xAcB6c70b...d1502fA3f
0.05 ETH0.0014136813.81968356
Request62985092024-07-12 20:36:2412 hrs ago1720816584IN
0xAcB6c70b...d1502fA3f
0.03 ETH0.00066956.54480894
Request62984322024-07-12 20:19:4812 hrs ago1720815588IN
0xAcB6c70b...d1502fA3f
1 ETH0.000687566.7213526
Request62968782024-07-12 14:40:3617 hrs ago1720795236IN
0xAcB6c70b...d1502fA3f
0.002 ETH0.0007216410.59764371
Request62967562024-07-12 14:13:4818 hrs ago1720793628IN
0xAcB6c70b...d1502fA3f
0.05 ETH0.00083418.15390251
Request62961472024-07-12 11:57:3620 hrs ago1720785456IN
0xAcB6c70b...d1502fA3f
0.01 ETH0.001011069.88378235
Request62960832024-07-12 11:44:1220 hrs ago1720784652IN
0xAcB6c70b...d1502fA3f
0.1 ETH0.0011383311.12793821
Request62960662024-07-12 11:40:4820 hrs ago1720784448IN
0xAcB6c70b...d1502fA3f
0.06 ETH0.0014285713.96520065
Request62959052024-07-12 11:05:3621 hrs ago1720782336IN
0xAcB6c70b...d1502fA3f
0.03 ETH0.000644689.46745604
Request62933542024-07-12 1:54:2430 hrs ago1720749264IN
0xAcB6c70b...d1502fA3f
0.1 ETH0.000773497.5613888
Request62927852024-07-11 23:50:1232 hrs ago1720741812IN
0xAcB6c70b...d1502fA3f
0.005 ETH0.000487867.16441128
Request62927812024-07-11 23:49:1232 hrs ago1720741752IN
0xAcB6c70b...d1502fA3f
0.001 ETH0.00049497.26789766
Request62923212024-07-11 22:04:4834 hrs ago1720735488IN
0xAcB6c70b...d1502fA3f
0.01 ETH0.000398125.84666776
Request62920162024-07-11 20:57:4835 hrs ago1720731468IN
0xAcB6c70b...d1502fA3f
0.1 ETH0.000612465.98722044
Request62919492024-07-11 20:43:3635 hrs ago1720730616IN
0xAcB6c70b...d1502fA3f
0.1 ETH0.000476666.9999366
Request62888952024-07-11 9:35:4847 hrs ago1720690548IN
0xAcB6c70b...d1502fA3f
0.1 ETH0.0023462222.93587544
Request62875792024-07-11 4:48:002 days ago1720673280IN
0xAcB6c70b...d1502fA3f
0.1 ETH0.0013193619.37532695
View all transactions

Advanced mode:
Parent Transaction Hash Block From To
View All Internal Transactions
Loading...
Loading

Similar Match Source Code
This contract matches the deployed Bytecode of the Source Code for Contract 0x91d3B695...1a8B5634e
The constructor portion of the code might be different and could alter the actual behaviour of the contract

Contract Name:
ERC20Faucet

Compiler Version
v0.8.24+commit.e11b9ed9

Optimization Enabled:
Yes with 200 runs

Other Settings:
paris EvmVersion

Contract Source Code (Solidity Standard Json-Input format)

File 1 of 8 : ERC20Faucet.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;

import "@openzeppelin/contracts/access/AccessControl.sol";
import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import "@openzeppelin/contracts/utils/math/Math.sol";

interface IERC20 {
    function transfer(address to, uint256 amount) external returns (bool);

    function balanceOf(address account) external view returns (uint256);

    event Transfer(address indexed from, address indexed to, uint256 value);
}

contract ERC20Faucet is AccessControl, ReentrancyGuard {
    bytes32 public constant CONTROLLER_ROLE = keccak256("CONTROLLER_ROLE");
    IERC20 public token;
    uint256 public tokenDecimals;

    uint256 public maxWithdrawalAmount = 1 * (10 ** 18);
    uint256 public lockTime = 1 seconds;

    // When withdrawing ERC20 token
    event Withdrawal(address indexed to, uint256 amount);
    // When depositing ETH
    event BaseDeposit(address indexed from, uint256 amount);
    // When withdrawing ETH
    event BaseWithdrawal(address indexed to, uint256 amount);

    mapping(address => uint256) nextAccessTime;

    constructor(address tokenAddress, uint256 _tokenDecimals) payable {
        require(_tokenDecimals <= 18, "Token decimals must be less than 18.");
        token = IERC20(tokenAddress);
        tokenDecimals = _tokenDecimals;
        _grantRole(DEFAULT_ADMIN_ROLE, _msgSender());
        _grantRole(CONTROLLER_ROLE, _msgSender());
    }

    function getLockTime() external view returns (uint256) {
        return lockTime;
    }

    function setLockTime(uint256 _seconds) external onlyRole(CONTROLLER_ROLE) {
        lockTime = _seconds;
    }

    function getMaxWithdrawalAmount() external view returns (uint256) {
        return maxWithdrawalAmount;
    }

    function setMaxWithdrawalAmount(
        uint256 amount
    ) external onlyRole(CONTROLLER_ROLE) {
        maxWithdrawalAmount = amount;
    }

    function getBalance() external view returns (uint256) {
        return token.balanceOf(address(this));
    }

    receive() external payable {
        emit BaseDeposit(_msgSender(), msg.value);
    }

    function request() external payable nonReentrant {
        require(
            _msgSender() != address(0),
            "Request must not originate from a zero account"
        );
        require(msg.value > 0, "Must send non-zero amount of ether");
        // If the sender pays x amount of ether, they will receive x amount of the ERC20 token
        uint256 decimalDifference = 18 - tokenDecimals;
        (bool success, uint256 amountToken) = Math.tryDiv(
            msg.value,
            10 ** decimalDifference
        );
        require(success, "Math operation failed");
        require(
            token.balanceOf(address(this)) >= amountToken,
            "Insufficient balance in faucet for withdrawal request"
        );
        require(
            amountToken <= maxWithdrawalAmount,
            "Request exceeds max withdrawal amount allowed."
        );
        require(
            block.timestamp >= nextAccessTime[_msgSender()],
            "Insufficient time elapsed since last withdrawal - try again later."
        );

        nextAccessTime[_msgSender()] = block.timestamp + lockTime;
        token.transfer(_msgSender(), amountToken);
        emit Withdrawal(_msgSender(), amountToken);
    }

    // Withdraw ERC020
    function withdraw(
        uint256 amount
    ) external onlyRole(CONTROLLER_ROLE) nonReentrant {
        require(amount > 0, "Amount must be greater than 0.");
        require(
            amount <= token.balanceOf(address(this)),
            "Amount exceeds balance of contract."
        );
        token.transfer(_msgSender(), amount);
        emit Withdrawal(_msgSender(), amount);
    }

    // Withdraw ETH
    function withdrawBase(
        uint256 amount
    ) external onlyRole(CONTROLLER_ROLE) nonReentrant {
        require(amount > 0, "Amount must be greater than 0.");
        require(
            amount <= address(this).balance,
            "Amount exceeds balance of contract."
        );
        payable(_msgSender()).transfer(amount);
        emit BaseWithdrawal(_msgSender(), amount);
    }
}

File 2 of 8 : AccessControl.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/AccessControl.sol)

pragma solidity ^0.8.20;

import {IAccessControl} from "./IAccessControl.sol";
import {Context} from "../utils/Context.sol";
import {ERC165} from "../utils/introspection/ERC165.sol";

/**
 * @dev Contract module that allows children to implement role-based access
 * control mechanisms. This is a lightweight version that doesn't allow enumerating role
 * members except through off-chain means by accessing the contract event logs. Some
 * applications may benefit from on-chain enumerability, for those cases see
 * {AccessControlEnumerable}.
 *
 * Roles are referred to by their `bytes32` identifier. These should be exposed
 * in the external API and be unique. The best way to achieve this is by
 * using `public constant` hash digests:
 *
 * ```solidity
 * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
 * ```
 *
 * Roles can be used to represent a set of permissions. To restrict access to a
 * function call, use {hasRole}:
 *
 * ```solidity
 * function foo() public {
 *     require(hasRole(MY_ROLE, msg.sender));
 *     ...
 * }
 * ```
 *
 * Roles can be granted and revoked dynamically via the {grantRole} and
 * {revokeRole} functions. Each role has an associated admin role, and only
 * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
 *
 * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
 * that only accounts with this role will be able to grant or revoke other
 * roles. More complex role relationships can be created by using
 * {_setRoleAdmin}.
 *
 * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
 * grant and revoke this role. Extra precautions should be taken to secure
 * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
 * to enforce additional security measures for this role.
 */
abstract contract AccessControl is Context, IAccessControl, ERC165 {
    struct RoleData {
        mapping(address account => bool) hasRole;
        bytes32 adminRole;
    }

    mapping(bytes32 role => RoleData) private _roles;

    bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;

    /**
     * @dev Modifier that checks that an account has a specific role. Reverts
     * with an {AccessControlUnauthorizedAccount} error including the required role.
     */
    modifier onlyRole(bytes32 role) {
        _checkRole(role);
        _;
    }

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
    }

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) public view virtual returns (bool) {
        return _roles[role].hasRole[account];
    }

    /**
     * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()`
     * is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier.
     */
    function _checkRole(bytes32 role) internal view virtual {
        _checkRole(role, _msgSender());
    }

    /**
     * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account`
     * is missing `role`.
     */
    function _checkRole(bytes32 role, address account) internal view virtual {
        if (!hasRole(role, account)) {
            revert AccessControlUnauthorizedAccount(account, role);
        }
    }

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) public view virtual returns (bytes32) {
        return _roles[role].adminRole;
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleGranted} event.
     */
    function grantRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
        _grantRole(role, account);
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleRevoked} event.
     */
    function revokeRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
        _revokeRole(role, account);
    }

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been revoked `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `callerConfirmation`.
     *
     * May emit a {RoleRevoked} event.
     */
    function renounceRole(bytes32 role, address callerConfirmation) public virtual {
        if (callerConfirmation != _msgSender()) {
            revert AccessControlBadConfirmation();
        }

        _revokeRole(role, callerConfirmation);
    }

    /**
     * @dev Sets `adminRole` as ``role``'s admin role.
     *
     * Emits a {RoleAdminChanged} event.
     */
    function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
        bytes32 previousAdminRole = getRoleAdmin(role);
        _roles[role].adminRole = adminRole;
        emit RoleAdminChanged(role, previousAdminRole, adminRole);
    }

    /**
     * @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleGranted} event.
     */
    function _grantRole(bytes32 role, address account) internal virtual returns (bool) {
        if (!hasRole(role, account)) {
            _roles[role].hasRole[account] = true;
            emit RoleGranted(role, account, _msgSender());
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Attempts to revoke `role` to `account` and returns a boolean indicating if `role` was revoked.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleRevoked} event.
     */
    function _revokeRole(bytes32 role, address account) internal virtual returns (bool) {
        if (hasRole(role, account)) {
            _roles[role].hasRole[account] = false;
            emit RoleRevoked(role, account, _msgSender());
            return true;
        } else {
            return false;
        }
    }
}

File 3 of 8 : IAccessControl.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/IAccessControl.sol)

pragma solidity ^0.8.20;

/**
 * @dev External interface of AccessControl declared to support ERC165 detection.
 */
interface IAccessControl {
    /**
     * @dev The `account` is missing a role.
     */
    error AccessControlUnauthorizedAccount(address account, bytes32 neededRole);

    /**
     * @dev The caller of a function is not the expected one.
     *
     * NOTE: Don't confuse with {AccessControlUnauthorizedAccount}.
     */
    error AccessControlBadConfirmation();

    /**
     * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
     *
     * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
     * {RoleAdminChanged} not being emitted signaling this.
     */
    event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);

    /**
     * @dev Emitted when `account` is granted `role`.
     *
     * `sender` is the account that originated the contract call, an admin role
     * bearer except when using {AccessControl-_setupRole}.
     */
    event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Emitted when `account` is revoked `role`.
     *
     * `sender` is the account that originated the contract call:
     *   - if using `revokeRole`, it is the admin role bearer
     *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
     */
    event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) external view returns (bool);

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {AccessControl-_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) external view returns (bytes32);

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function grantRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function revokeRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been granted `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `callerConfirmation`.
     */
    function renounceRole(bytes32 role, address callerConfirmation) external;
}

File 4 of 8 : Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

File 5 of 8 : ERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/ERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}

File 6 of 8 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

File 7 of 8 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 8 of 8 : ReentrancyGuard.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ReentrancyGuard.sol)

pragma solidity ^0.8.20;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant NOT_ENTERED = 1;
    uint256 private constant ENTERED = 2;

    uint256 private _status;

    /**
     * @dev Unauthorized reentrant call.
     */
    error ReentrancyGuardReentrantCall();

    constructor() {
        _status = NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be NOT_ENTERED
        if (_status == ENTERED) {
            revert ReentrancyGuardReentrantCall();
        }

        // Any calls to nonReentrant after this point will fail
        _status = ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == ENTERED;
    }
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "evmVersion": "paris",
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  }
}

Contract ABI

[{"inputs":[{"internalType":"address","name":"tokenAddress","type":"address"},{"internalType":"uint256","name":"_tokenDecimals","type":"uint256"}],"stateMutability":"payable","type":"constructor"},{"inputs":[],"name":"AccessControlBadConfirmation","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"bytes32","name":"neededRole","type":"bytes32"}],"name":"AccessControlUnauthorizedAccount","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"BaseDeposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"BaseWithdrawal","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"previousAdminRole","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"newAdminRole","type":"bytes32"}],"name":"RoleAdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Withdrawal","type":"event"},{"inputs":[],"name":"CONTROLLER_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getBalance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getLockTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getMaxWithdrawalAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lockTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxWithdrawalAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"callerConfirmation","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"request","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_seconds","type":"uint256"}],"name":"setLockTime","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"setMaxWithdrawalAmount","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"token","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tokenDecimals","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"withdrawBase","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]

Deployed Bytecode

0x6080604052600436106101235760003560e01c80633b97e856116100a0578063c0a4d64d11610064578063c0a4d64d1461032e578063d547741f14610343578063e976d43114610363578063f98bea1514610379578063fc0c546a1461039957600080fd5b80633b97e856146102ae57806391d14854146102c45780639ce7f670146102e4578063a217fddf146102f9578063ae04d45d1461030e57600080fd5b806325303a73116100e757806325303a73146102245780632e1a7d4d146102465780632f2ff15d14610266578063338cdca11461028657806336568abe1461028e57600080fd5b806301ffc9a714610164578063092c5b3b146101995780630d668087146101c957806312065fe0146101df578063248a9ca3146101f457600080fd5b3661015f5760405134815233907f5086c621b5449ffad9426760a33cce474ad03302e83b0a9c1478f01b5ce687009060200160405180910390a2005b600080fd5b34801561017057600080fd5b5061018461017f366004610da9565b6103d1565b60405190151581526020015b60405180910390f35b3480156101a557600080fd5b506101bb600080516020610ff083398151915281565b604051908152602001610190565b3480156101d557600080fd5b506101bb60055481565b3480156101eb57600080fd5b506101bb610408565b34801561020057600080fd5b506101bb61020f366004610dda565b60009081526020819052604090206001015490565b34801561023057600080fd5b5061024461023f366004610dda565b61047a565b005b34801561025257600080fd5b50610244610261366004610dda565b610498565b34801561027257600080fd5b50610244610281366004610df3565b61065f565b61024461068a565b34801561029a57600080fd5b506102446102a9366004610df3565b610a74565b3480156102ba57600080fd5b506101bb60035481565b3480156102d057600080fd5b506101846102df366004610df3565b610aac565b3480156102f057600080fd5b506004546101bb565b34801561030557600080fd5b506101bb600081565b34801561031a57600080fd5b50610244610329366004610dda565b610ad5565b34801561033a57600080fd5b506005546101bb565b34801561034f57600080fd5b5061024461035e366004610df3565b610af3565b34801561036f57600080fd5b506101bb60045481565b34801561038557600080fd5b50610244610394366004610dda565b610b18565b3480156103a557600080fd5b506002546103b9906001600160a01b031681565b6040516001600160a01b039091168152602001610190565b60006001600160e01b03198216637965db0b60e01b148061040257506301ffc9a760e01b6001600160e01b03198316145b92915050565b6002546040516370a0823160e01b81523060048201526000916001600160a01b0316906370a0823190602401602060405180830381865afa158015610451573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906104759190610e2f565b905090565b600080516020610ff083398151915261049281610c08565b50600455565b600080516020610ff08339815191526104b081610c08565b6104b8610c15565b6000821161050d5760405162461bcd60e51b815260206004820152601e60248201527f416d6f756e74206d7573742062652067726561746572207468616e20302e000060448201526064015b60405180910390fd5b6002546040516370a0823160e01b81523060048201526001600160a01b03909116906370a0823190602401602060405180830381865afa158015610555573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906105799190610e2f565b8211156105985760405162461bcd60e51b815260040161050490610e48565b6002546001600160a01b031663a9059cbb336040516001600160e01b031960e084901b1681526001600160a01b039091166004820152602481018590526044016020604051808303816000875af11580156105f7573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061061b9190610e8b565b5060405182815233907f7fcf532c15f0a6db0bd6d0e038bea71d30d808c7d98cb3bf7268a95bf5081b65906020015b60405180910390a261065b60018055565b5050565b60008281526020819052604090206001015461067a81610c08565b6106848383610c3f565b50505050565b610692610c15565b336106f65760405162461bcd60e51b815260206004820152602e60248201527f52657175657374206d757374206e6f74206f726967696e6174652066726f6d2060448201526d18481e995c9bc81858d8dbdd5b9d60921b6064820152608401610504565b600034116107515760405162461bcd60e51b815260206004820152602260248201527f4d7573742073656e64206e6f6e2d7a65726f20616d6f756e74206f662065746860448201526132b960f11b6064820152608401610504565b600060035460126107629190610ec3565b905060008061077b3461077685600a610fba565b610cd1565b91509150816107c45760405162461bcd60e51b815260206004820152601560248201527413585d1a081bdc195c985d1a5bdb8819985a5b1959605a1b6044820152606401610504565b6002546040516370a0823160e01b815230600482015282916001600160a01b0316906370a0823190602401602060405180830381865afa15801561080c573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906108309190610e2f565b101561089c5760405162461bcd60e51b815260206004820152603560248201527f496e73756666696369656e742062616c616e636520696e2066617563657420666044820152741bdc881dda5d1a191c985dd85b081c995c5d595cdd605a1b6064820152608401610504565b6004548111156109055760405162461bcd60e51b815260206004820152602e60248201527f526571756573742065786365656473206d6178207769746864726177616c206160448201526d36b7bab73a1030b63637bbb2b21760911b6064820152608401610504565b336000908152600660205260409020544210156109955760405162461bcd60e51b815260206004820152604260248201527f496e73756666696369656e742074696d6520656c61707365642073696e63652060448201527f6c617374207769746864726177616c202d2074727920616761696e206c617465606482015261391760f11b608482015260a401610504565b6005546109a29042610fc6565b33600081815260066020908152604080832094909455600254845163a9059cbb60e01b815260048101949094526024840186905293516001600160a01b039094169363a9059cbb936044808201949183900301908290875af1158015610a0c573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610a309190610e8b565b5060405181815233907f7fcf532c15f0a6db0bd6d0e038bea71d30d808c7d98cb3bf7268a95bf5081b659060200160405180910390a2505050610a7260018055565b565b6001600160a01b0381163314610a9d5760405163334bd91960e11b815260040160405180910390fd5b610aa78282610d05565b505050565b6000918252602082815260408084206001600160a01b0393909316845291905290205460ff1690565b600080516020610ff0833981519152610aed81610c08565b50600555565b600082815260208190526040902060010154610b0e81610c08565b6106848383610d05565b600080516020610ff0833981519152610b3081610c08565b610b38610c15565b60008211610b885760405162461bcd60e51b815260206004820152601e60248201527f416d6f756e74206d7573742062652067726561746572207468616e20302e00006044820152606401610504565b47821115610ba85760405162461bcd60e51b815260040161050490610e48565b604051339083156108fc029084906000818181858888f19350505050158015610bd5573d6000803e3d6000fd5b5060405182815233907f9b94bebc5fbf1f9908ed29fdf6a09258d86293f6327ae064200fb4a9c76d03459060200161064a565b610c128133610d70565b50565b600260015403610c3857604051633ee5aeb560e01b815260040160405180910390fd5b6002600155565b6000610c4b8383610aac565b610cc9576000838152602081815260408083206001600160a01b03861684529091529020805460ff19166001179055610c813390565b6001600160a01b0316826001600160a01b0316847f2f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0d60405160405180910390a4506001610402565b506000610402565b60008082600003610ce757506000905080610cfe565b6001838581610cf857610cf8610fd9565b04915091505b9250929050565b6000610d118383610aac565b15610cc9576000838152602081815260408083206001600160a01b0386168085529252808320805460ff1916905551339286917ff6391f5c32d9c69d2a47ea670b442974b53935d1edc7fd64eb21e047a839171b9190a4506001610402565b610d7a8282610aac565b61065b5760405163e2517d3f60e01b81526001600160a01b038216600482015260248101839052604401610504565b600060208284031215610dbb57600080fd5b81356001600160e01b031981168114610dd357600080fd5b9392505050565b600060208284031215610dec57600080fd5b5035919050565b60008060408385031215610e0657600080fd5b8235915060208301356001600160a01b0381168114610e2457600080fd5b809150509250929050565b600060208284031215610e4157600080fd5b5051919050565b60208082526023908201527f416d6f756e7420657863656564732062616c616e6365206f6620636f6e74726160408201526231ba1760e91b606082015260800190565b600060208284031215610e9d57600080fd5b81518015158114610dd357600080fd5b634e487b7160e01b600052601160045260246000fd5b8181038181111561040257610402610ead565b600181815b80851115610f11578160001904821115610ef757610ef7610ead565b80851615610f0457918102915b93841c9390800290610edb565b509250929050565b600082610f2857506001610402565b81610f3557506000610402565b8160018114610f4b5760028114610f5557610f71565b6001915050610402565b60ff841115610f6657610f66610ead565b50506001821b610402565b5060208310610133831016604e8410600b8410161715610f94575081810a610402565b610f9e8383610ed6565b8060001904821115610fb257610fb2610ead565b029392505050565b6000610dd38383610f19565b8082018082111561040257610402610ead565b634e487b7160e01b600052601260045260246000fdfe7b765e0e932d348852a6f810bfa1ab891e259123f02db8cdcde614c570223357a2646970667358221220246044d8a44d811ee0e96dfbee3384df5b00a5e119cb3fbd3b17b388ed6bb39364736f6c63430008180033

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.