Sepolia Testnet

Contract

0x9DddF5b417Ed92cc4699E9D3624c58BB4bF454D9

Overview

ETH Balance

8.329 ETH

Multichain Info

N/A
Transaction Hash
Method
Block
From
To
Transfer69182382024-10-21 19:52:3652 days ago1729540356IN
0x9DddF5b4...B4bF454D9
10 ETH0.000048962.16158103
Transfer66247132024-09-03 10:44:12101 days ago1725360252IN
0x9DddF5b4...B4bF454D9
20 ETH0.0005463324.11845672
Transfer65926632024-08-29 8:09:48106 days ago1724918988IN
0x9DddF5b4...B4bF454D9
10 ETH0.00286151126.32520693
Transfer65739172024-08-26 8:56:36109 days ago1724662596IN
0x9DddF5b4...B4bF454D9
10 ETH0.0017292576.33998027
Transfer65562442024-08-23 13:51:00112 days ago1724421060IN
0x9DddF5b4...B4bF454D9
10 ETH0.000108684.79817645
Transfer64663512024-08-09 10:31:12126 days ago1723199472IN
0x9DddF5b4...B4bF454D9
20 ETH0.00008323.67327861
Transfer64421032024-08-05 14:11:00130 days ago1722867060IN
0x9DddF5b4...B4bF454D9
20 ETH0.0010020144.2351263
Transfer62321632024-07-02 13:50:24164 days ago1719928224IN
0x9DddF5b4...B4bF454D9
15 ETH0.00255546112.81389978
Transfer61765672024-06-24 13:21:12172 days ago1719235272IN
0x9DddF5b4...B4bF454D9
5 ETH0.000894439.4843765
Transfer60508282024-06-06 11:22:00190 days ago1717672920IN
0x9DddF5b4...B4bF454D9
25 ETH0.0003890417.17497138
Set Claim Amount58796462024-05-11 8:08:24216 days ago1715414904IN
0x9DddF5b4...B4bF454D9
0 ETH0.000043991.50065521
Transfer58796412024-05-11 8:07:12216 days ago1715414832IN
0x9DddF5b4...B4bF454D9
20 ETH0.000033991.50064641
Set Claim Amount58561992024-05-07 17:01:48219 days ago1715101308IN
0x9DddF5b4...B4bF454D9
0 ETH0.00365432124.64854856
Transfer58085282024-04-30 11:50:36227 days ago1714477836IN
0x9DddF5b4...B4bF454D9
0.1 ETH0.000096414.25644692
Set Claim Amount58085152024-04-30 11:48:00227 days ago1714477680IN
0x9DddF5b4...B4bF454D9
0 ETH0.000155285.29691952
Add Caller58085032024-04-30 11:45:24227 days ago1714477524IN
0x9DddF5b4...B4bF454D9
0 ETH0.000302836.46312467

Latest 25 internal transactions (View All)

Advanced mode:
Parent Transaction Hash Block
From
To
72697282024-12-13 9:57:245 hrs ago1734083844
0x9DddF5b4...B4bF454D9
0.03 ETH
72689352024-12-13 7:01:008 hrs ago1734073260
0x9DddF5b4...B4bF454D9
0.03 ETH
72657732024-12-12 19:33:0020 hrs ago1734031980
0x9DddF5b4...B4bF454D9
0.03 ETH
72655732024-12-12 18:48:2420 hrs ago1734029304
0x9DddF5b4...B4bF454D9
0.03 ETH
72653682024-12-12 18:03:1221 hrs ago1734026592
0x9DddF5b4...B4bF454D9
0.03 ETH
72637122024-12-12 12:05:2427 hrs ago1734005124
0x9DddF5b4...B4bF454D9
0.03 ETH
72591982024-12-11 20:06:3643 hrs ago1733947596
0x9DddF5b4...B4bF454D9
0.03 ETH
72565702024-12-11 10:45:242 days ago1733913924
0x9DddF5b4...B4bF454D9
0.03 ETH
72508642024-12-10 14:40:123 days ago1733841612
0x9DddF5b4...B4bF454D9
0.03 ETH
72507412024-12-10 14:14:363 days ago1733840076
0x9DddF5b4...B4bF454D9
0.03 ETH
72462542024-12-09 22:18:483 days ago1733782728
0x9DddF5b4...B4bF454D9
0.03 ETH
72432582024-12-09 11:33:484 days ago1733744028
0x9DddF5b4...B4bF454D9
0.03 ETH
72427992024-12-09 9:56:364 days ago1733738196
0x9DddF5b4...B4bF454D9
0.03 ETH
72296892024-12-07 11:36:366 days ago1733571396
0x9DddF5b4...B4bF454D9
0.03 ETH
72234812024-12-06 13:41:487 days ago1733492508
0x9DddF5b4...B4bF454D9
0.03 ETH
72196302024-12-06 0:01:367 days ago1733443296
0x9DddF5b4...B4bF454D9
0.03 ETH
72184212024-12-05 19:45:487 days ago1733427948
0x9DddF5b4...B4bF454D9
0.03 ETH
72134052024-12-05 2:01:128 days ago1733364072
0x9DddF5b4...B4bF454D9
0.03 ETH
71775632024-11-29 15:16:0014 days ago1732893360
0x9DddF5b4...B4bF454D9
0.03 ETH
71693702024-11-28 10:23:3615 days ago1732789416
0x9DddF5b4...B4bF454D9
0.03 ETH
71649592024-11-27 18:51:0015 days ago1732733460
0x9DddF5b4...B4bF454D9
0.03 ETH
71628212024-11-27 11:10:4816 days ago1732705848
0x9DddF5b4...B4bF454D9
0.03 ETH
71627572024-11-27 10:55:3616 days ago1732704936
0x9DddF5b4...B4bF454D9
0.03 ETH
71597332024-11-27 0:05:3616 days ago1732665936
0x9DddF5b4...B4bF454D9
0.03 ETH
71570482024-11-26 14:40:1217 days ago1732632012
0x9DddF5b4...B4bF454D9
0.03 ETH
View All Internal Transactions
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
Faucet

Compiler Version
v0.8.24+commit.e11b9ed9

Optimization Enabled:
No with 200 runs

Other Settings:
paris EvmVersion

Contract Source Code (Solidity Standard Json-Input format)

File 1 of 18 : Faucet.sol
// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.24;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/utils/Pausable.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/metatx/ERC2771Context.sol";
import "@openzeppelin/contracts/metatx/ERC2771Forwarder.sol";

interface IFaucet {

    function claim() external;
}

contract Faucet is ERC2771Context, Pausable, Ownable, IFaucet {

    event Received(address, uint256); 
    event Claimed(address, uint256); 
    
    error IsNotACaller();
    error NotEnoughtFunds();
    error ClaimTransferFailed();
    error TriedToClaimNothig();

    uint256 private _claimAmountWei;
    mapping(address => bool) _callers;
    
    constructor(uint256 initialClaimAmountWei, address initialOwner, ERC2771Forwarder forwarder) ERC2771Context(address(forwarder)) Ownable(initialOwner)  {
        _claimAmountWei = initialClaimAmountWei;
    }

    function setClaimAmount(uint256 amountWei) public onlyOwner {
        _claimAmountWei = amountWei;
    }

    function getClaimAmount() public view returns(uint256) {
        return _claimAmountWei;
    }

    function addCaller(address caller) public onlyOwner {
        _callers[caller] = true;
    }

    function removeCaller(address caller) public onlyOwner {
        _callers[caller] = false;
    }

    function withdraw(address receiver, uint256 amount) public onlyOwner {
        if (address(this).balance < amount) revert NotEnoughtFunds();
        payable(receiver).transfer(amount);
    }

    function claim() external whenNotPaused onlyCaller {
        address receiver = _msgSender();
        if (_claimAmountWei <= 0) revert TriedToClaimNothig();
        if (address(this).balance < _claimAmountWei) revert NotEnoughtFunds();
        payable(receiver).transfer(_claimAmountWei);
        emit Claimed(receiver, _claimAmountWei);
    }

    function pause() public onlyOwner {
        _pause();
    }

    function unpause() public onlyOwner {
        _unpause();
    }

    // Overriden due to Context and ERC2771Context conflict
    function _msgSender() internal view override(Context, ERC2771Context) returns(address) {
        return ERC2771Context._msgSender();
    } 

    // Overriden due to Context and ERC2771Context conflict
    function _msgData() internal view override(Context, ERC2771Context) returns(bytes calldata) {
        return ERC2771Context._msgData();
    }

    // Overriden due to Context and ERC2771Context conflict
    function _contextSuffixLength() internal view override(Context, ERC2771Context) returns (uint256) {
        return ERC2771Context._contextSuffixLength();
    }

    receive() external payable {
        emit Received(msg.sender, msg.value);
    }

    modifier onlyCaller {
        if (!_callers[tx.origin]) revert IsNotACaller();
        _;
    }
}

File 2 of 18 : Ownable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

File 3 of 18 : IERC5267.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)

pragma solidity ^0.8.20;

interface IERC5267 {
    /**
     * @dev MAY be emitted to signal that the domain could have changed.
     */
    event EIP712DomainChanged();

    /**
     * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
     * signature.
     */
    function eip712Domain()
        external
        view
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        );
}

File 4 of 18 : ERC2771Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (metatx/ERC2771Context.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Context variant with ERC2771 support.
 *
 * WARNING: Avoid using this pattern in contracts that rely in a specific calldata length as they'll
 * be affected by any forwarder whose `msg.data` is suffixed with the `from` address according to the ERC2771
 * specification adding the address size in bytes (20) to the calldata size. An example of an unexpected
 * behavior could be an unintended fallback (or another function) invocation while trying to invoke the `receive`
 * function only accessible if `msg.data.length == 0`.
 *
 * WARNING: The usage of `delegatecall` in this contract is dangerous and may result in context corruption.
 * Any forwarded request to this contract triggering a `delegatecall` to itself will result in an invalid {_msgSender}
 * recovery.
 */
abstract contract ERC2771Context is Context {
    /// @custom:oz-upgrades-unsafe-allow state-variable-immutable
    address private immutable _trustedForwarder;

    /**
     * @dev Initializes the contract with a trusted forwarder, which will be able to
     * invoke functions on this contract on behalf of other accounts.
     *
     * NOTE: The trusted forwarder can be replaced by overriding {trustedForwarder}.
     */
    /// @custom:oz-upgrades-unsafe-allow constructor
    constructor(address trustedForwarder_) {
        _trustedForwarder = trustedForwarder_;
    }

    /**
     * @dev Returns the address of the trusted forwarder.
     */
    function trustedForwarder() public view virtual returns (address) {
        return _trustedForwarder;
    }

    /**
     * @dev Indicates whether any particular address is the trusted forwarder.
     */
    function isTrustedForwarder(address forwarder) public view virtual returns (bool) {
        return forwarder == trustedForwarder();
    }

    /**
     * @dev Override for `msg.sender`. Defaults to the original `msg.sender` whenever
     * a call is not performed by the trusted forwarder or the calldata length is less than
     * 20 bytes (an address length).
     */
    function _msgSender() internal view virtual override returns (address) {
        uint256 calldataLength = msg.data.length;
        uint256 contextSuffixLength = _contextSuffixLength();
        if (isTrustedForwarder(msg.sender) && calldataLength >= contextSuffixLength) {
            return address(bytes20(msg.data[calldataLength - contextSuffixLength:]));
        } else {
            return super._msgSender();
        }
    }

    /**
     * @dev Override for `msg.data`. Defaults to the original `msg.data` whenever
     * a call is not performed by the trusted forwarder or the calldata length is less than
     * 20 bytes (an address length).
     */
    function _msgData() internal view virtual override returns (bytes calldata) {
        uint256 calldataLength = msg.data.length;
        uint256 contextSuffixLength = _contextSuffixLength();
        if (isTrustedForwarder(msg.sender) && calldataLength >= contextSuffixLength) {
            return msg.data[:calldataLength - contextSuffixLength];
        } else {
            return super._msgData();
        }
    }

    /**
     * @dev ERC-2771 specifies the context as being a single address (20 bytes).
     */
    function _contextSuffixLength() internal view virtual override returns (uint256) {
        return 20;
    }
}

File 5 of 18 : ERC2771Forwarder.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (metatx/ERC2771Forwarder.sol)

pragma solidity ^0.8.20;

import {ERC2771Context} from "./ERC2771Context.sol";
import {ECDSA} from "../utils/cryptography/ECDSA.sol";
import {EIP712} from "../utils/cryptography/EIP712.sol";
import {Nonces} from "../utils/Nonces.sol";
import {Address} from "../utils/Address.sol";

/**
 * @dev A forwarder compatible with ERC2771 contracts. See {ERC2771Context}.
 *
 * This forwarder operates on forward requests that include:
 *
 * * `from`: An address to operate on behalf of. It is required to be equal to the request signer.
 * * `to`: The address that should be called.
 * * `value`: The amount of native token to attach with the requested call.
 * * `gas`: The amount of gas limit that will be forwarded with the requested call.
 * * `nonce`: A unique transaction ordering identifier to avoid replayability and request invalidation.
 * * `deadline`: A timestamp after which the request is not executable anymore.
 * * `data`: Encoded `msg.data` to send with the requested call.
 *
 * Relayers are able to submit batches if they are processing a high volume of requests. With high
 * throughput, relayers may run into limitations of the chain such as limits on the number of
 * transactions in the mempool. In these cases the recommendation is to distribute the load among
 * multiple accounts.
 *
 * NOTE: Batching requests includes an optional refund for unused `msg.value` that is achieved by
 * performing a call with empty calldata. While this is within the bounds of ERC-2771 compliance,
 * if the refund receiver happens to consider the forwarder a trusted forwarder, it MUST properly
 * handle `msg.data.length == 0`. `ERC2771Context` in OpenZeppelin Contracts versions prior to 4.9.3
 * do not handle this properly.
 *
 * ==== Security Considerations
 *
 * If a relayer submits a forward request, it should be willing to pay up to 100% of the gas amount
 * specified in the request. This contract does not implement any kind of retribution for this gas,
 * and it is assumed that there is an out of band incentive for relayers to pay for execution on
 * behalf of signers. Often, the relayer is operated by a project that will consider it a user
 * acquisition cost.
 *
 * By offering to pay for gas, relayers are at risk of having that gas used by an attacker toward
 * some other purpose that is not aligned with the expected out of band incentives. If you operate a
 * relayer, consider whitelisting target contracts and function selectors. When relaying ERC-721 or
 * ERC-1155 transfers specifically, consider rejecting the use of the `data` field, since it can be
 * used to execute arbitrary code.
 */
contract ERC2771Forwarder is EIP712, Nonces {
    using ECDSA for bytes32;

    struct ForwardRequestData {
        address from;
        address to;
        uint256 value;
        uint256 gas;
        uint48 deadline;
        bytes data;
        bytes signature;
    }

    bytes32 internal constant _FORWARD_REQUEST_TYPEHASH =
        keccak256(
            "ForwardRequest(address from,address to,uint256 value,uint256 gas,uint256 nonce,uint48 deadline,bytes data)"
        );

    /**
     * @dev Emitted when a `ForwardRequest` is executed.
     *
     * NOTE: An unsuccessful forward request could be due to an invalid signature, an expired deadline,
     * or simply a revert in the requested call. The contract guarantees that the relayer is not able to force
     * the requested call to run out of gas.
     */
    event ExecutedForwardRequest(address indexed signer, uint256 nonce, bool success);

    /**
     * @dev The request `from` doesn't match with the recovered `signer`.
     */
    error ERC2771ForwarderInvalidSigner(address signer, address from);

    /**
     * @dev The `requestedValue` doesn't match with the available `msgValue`.
     */
    error ERC2771ForwarderMismatchedValue(uint256 requestedValue, uint256 msgValue);

    /**
     * @dev The request `deadline` has expired.
     */
    error ERC2771ForwarderExpiredRequest(uint48 deadline);

    /**
     * @dev The request target doesn't trust the `forwarder`.
     */
    error ERC2771UntrustfulTarget(address target, address forwarder);

    /**
     * @dev See {EIP712-constructor}.
     */
    constructor(string memory name) EIP712(name, "1") {}

    /**
     * @dev Returns `true` if a request is valid for a provided `signature` at the current block timestamp.
     *
     * A transaction is considered valid when the target trusts this forwarder, the request hasn't expired
     * (deadline is not met), and the signer matches the `from` parameter of the signed request.
     *
     * NOTE: A request may return false here but it won't cause {executeBatch} to revert if a refund
     * receiver is provided.
     */
    function verify(ForwardRequestData calldata request) public view virtual returns (bool) {
        (bool isTrustedForwarder, bool active, bool signerMatch, ) = _validate(request);
        return isTrustedForwarder && active && signerMatch;
    }

    /**
     * @dev Executes a `request` on behalf of `signature`'s signer using the ERC-2771 protocol. The gas
     * provided to the requested call may not be exactly the amount requested, but the call will not run
     * out of gas. Will revert if the request is invalid or the call reverts, in this case the nonce is not consumed.
     *
     * Requirements:
     *
     * - The request value should be equal to the provided `msg.value`.
     * - The request should be valid according to {verify}.
     */
    function execute(ForwardRequestData calldata request) public payable virtual {
        // We make sure that msg.value and request.value match exactly.
        // If the request is invalid or the call reverts, this whole function
        // will revert, ensuring value isn't stuck.
        if (msg.value != request.value) {
            revert ERC2771ForwarderMismatchedValue(request.value, msg.value);
        }

        if (!_execute(request, true)) {
            revert Address.FailedInnerCall();
        }
    }

    /**
     * @dev Batch version of {execute} with optional refunding and atomic execution.
     *
     * In case a batch contains at least one invalid request (see {verify}), the
     * request will be skipped and the `refundReceiver` parameter will receive back the
     * unused requested value at the end of the execution. This is done to prevent reverting
     * the entire batch when a request is invalid or has already been submitted.
     *
     * If the `refundReceiver` is the `address(0)`, this function will revert when at least
     * one of the requests was not valid instead of skipping it. This could be useful if
     * a batch is required to get executed atomically (at least at the top-level). For example,
     * refunding (and thus atomicity) can be opt-out if the relayer is using a service that avoids
     * including reverted transactions.
     *
     * Requirements:
     *
     * - The sum of the requests' values should be equal to the provided `msg.value`.
     * - All of the requests should be valid (see {verify}) when `refundReceiver` is the zero address.
     *
     * NOTE: Setting a zero `refundReceiver` guarantees an all-or-nothing requests execution only for
     * the first-level forwarded calls. In case a forwarded request calls to a contract with another
     * subcall, the second-level call may revert without the top-level call reverting.
     */
    function executeBatch(
        ForwardRequestData[] calldata requests,
        address payable refundReceiver
    ) public payable virtual {
        bool atomic = refundReceiver == address(0);

        uint256 requestsValue;
        uint256 refundValue;

        for (uint256 i; i < requests.length; ++i) {
            requestsValue += requests[i].value;
            bool success = _execute(requests[i], atomic);
            if (!success) {
                refundValue += requests[i].value;
            }
        }

        // The batch should revert if there's a mismatched msg.value provided
        // to avoid request value tampering
        if (requestsValue != msg.value) {
            revert ERC2771ForwarderMismatchedValue(requestsValue, msg.value);
        }

        // Some requests with value were invalid (possibly due to frontrunning).
        // To avoid leaving ETH in the contract this value is refunded.
        if (refundValue != 0) {
            // We know refundReceiver != address(0) && requestsValue == msg.value
            // meaning we can ensure refundValue is not taken from the original contract's balance
            // and refundReceiver is a known account.
            Address.sendValue(refundReceiver, refundValue);
        }
    }

    /**
     * @dev Validates if the provided request can be executed at current block timestamp with
     * the given `request.signature` on behalf of `request.signer`.
     */
    function _validate(
        ForwardRequestData calldata request
    ) internal view virtual returns (bool isTrustedForwarder, bool active, bool signerMatch, address signer) {
        (bool isValid, address recovered) = _recoverForwardRequestSigner(request);

        return (
            _isTrustedByTarget(request.to),
            request.deadline >= block.timestamp,
            isValid && recovered == request.from,
            recovered
        );
    }

    /**
     * @dev Returns a tuple with the recovered the signer of an EIP712 forward request message hash
     * and a boolean indicating if the signature is valid.
     *
     * NOTE: The signature is considered valid if {ECDSA-tryRecover} indicates no recover error for it.
     */
    function _recoverForwardRequestSigner(
        ForwardRequestData calldata request
    ) internal view virtual returns (bool, address) {
        (address recovered, ECDSA.RecoverError err, ) = _hashTypedDataV4(
            keccak256(
                abi.encode(
                    _FORWARD_REQUEST_TYPEHASH,
                    request.from,
                    request.to,
                    request.value,
                    request.gas,
                    nonces(request.from),
                    request.deadline,
                    keccak256(request.data)
                )
            )
        ).tryRecover(request.signature);

        return (err == ECDSA.RecoverError.NoError, recovered);
    }

    /**
     * @dev Validates and executes a signed request returning the request call `success` value.
     *
     * Internal function without msg.value validation.
     *
     * Requirements:
     *
     * - The caller must have provided enough gas to forward with the call.
     * - The request must be valid (see {verify}) if the `requireValidRequest` is true.
     *
     * Emits an {ExecutedForwardRequest} event.
     *
     * IMPORTANT: Using this function doesn't check that all the `msg.value` was sent, potentially
     * leaving value stuck in the contract.
     */
    function _execute(
        ForwardRequestData calldata request,
        bool requireValidRequest
    ) internal virtual returns (bool success) {
        (bool isTrustedForwarder, bool active, bool signerMatch, address signer) = _validate(request);

        // Need to explicitly specify if a revert is required since non-reverting is default for
        // batches and reversion is opt-in since it could be useful in some scenarios
        if (requireValidRequest) {
            if (!isTrustedForwarder) {
                revert ERC2771UntrustfulTarget(request.to, address(this));
            }

            if (!active) {
                revert ERC2771ForwarderExpiredRequest(request.deadline);
            }

            if (!signerMatch) {
                revert ERC2771ForwarderInvalidSigner(signer, request.from);
            }
        }

        // Ignore an invalid request because requireValidRequest = false
        if (isTrustedForwarder && signerMatch && active) {
            // Nonce should be used before the call to prevent reusing by reentrancy
            uint256 currentNonce = _useNonce(signer);

            uint256 reqGas = request.gas;
            address to = request.to;
            uint256 value = request.value;
            bytes memory data = abi.encodePacked(request.data, request.from);

            uint256 gasLeft;

            assembly {
                success := call(reqGas, to, value, add(data, 0x20), mload(data), 0, 0)
                gasLeft := gas()
            }

            _checkForwardedGas(gasLeft, request);

            emit ExecutedForwardRequest(signer, currentNonce, success);
        }
    }

    /**
     * @dev Returns whether the target trusts this forwarder.
     *
     * This function performs a static call to the target contract calling the
     * {ERC2771Context-isTrustedForwarder} function.
     */
    function _isTrustedByTarget(address target) private view returns (bool) {
        bytes memory encodedParams = abi.encodeCall(ERC2771Context.isTrustedForwarder, (address(this)));

        bool success;
        uint256 returnSize;
        uint256 returnValue;
        /// @solidity memory-safe-assembly
        assembly {
            // Perform the staticcal and save the result in the scratch space.
            // | Location  | Content  | Content (Hex)                                                      |
            // |-----------|----------|--------------------------------------------------------------------|
            // |           |          |                                                           result ↓ |
            // | 0x00:0x1F | selector | 0x0000000000000000000000000000000000000000000000000000000000000001 |
            success := staticcall(gas(), target, add(encodedParams, 0x20), mload(encodedParams), 0, 0x20)
            returnSize := returndatasize()
            returnValue := mload(0)
        }

        return success && returnSize >= 0x20 && returnValue > 0;
    }

    /**
     * @dev Checks if the requested gas was correctly forwarded to the callee.
     *
     * As a consequence of https://eips.ethereum.org/EIPS/eip-150[EIP-150]:
     * - At most `gasleft() - floor(gasleft() / 64)` is forwarded to the callee.
     * - At least `floor(gasleft() / 64)` is kept in the caller.
     *
     * It reverts consuming all the available gas if the forwarded gas is not the requested gas.
     *
     * IMPORTANT: The `gasLeft` parameter should be measured exactly at the end of the forwarded call.
     * Any gas consumed in between will make room for bypassing this check.
     */
    function _checkForwardedGas(uint256 gasLeft, ForwardRequestData calldata request) private pure {
        // To avoid insufficient gas griefing attacks, as referenced in https://ronan.eth.limo/blog/ethereum-gas-dangers/
        //
        // A malicious relayer can attempt to shrink the gas forwarded so that the underlying call reverts out-of-gas
        // but the forwarding itself still succeeds. In order to make sure that the subcall received sufficient gas,
        // we will inspect gasleft() after the forwarding.
        //
        // Let X be the gas available before the subcall, such that the subcall gets at most X * 63 / 64.
        // We can't know X after CALL dynamic costs, but we want it to be such that X * 63 / 64 >= req.gas.
        // Let Y be the gas used in the subcall. gasleft() measured immediately after the subcall will be gasleft() = X - Y.
        // If the subcall ran out of gas, then Y = X * 63 / 64 and gasleft() = X - Y = X / 64.
        // Under this assumption req.gas / 63 > gasleft() is true is true if and only if
        // req.gas / 63 > X / 64, or equivalently req.gas > X * 63 / 64.
        // This means that if the subcall runs out of gas we are able to detect that insufficient gas was passed.
        //
        // We will now also see that req.gas / 63 > gasleft() implies that req.gas >= X * 63 / 64.
        // The contract guarantees Y <= req.gas, thus gasleft() = X - Y >= X - req.gas.
        // -    req.gas / 63 > gasleft()
        // -    req.gas / 63 >= X - req.gas
        // -    req.gas >= X * 63 / 64
        // In other words if req.gas < X * 63 / 64 then req.gas / 63 <= gasleft(), thus if the relayer behaves honestly
        // the forwarding does not revert.
        if (gasLeft < request.gas / 63) {
            // We explicitly trigger invalid opcode to consume all gas and bubble-up the effects, since
            // neither revert or assert consume all gas since Solidity 0.8.20
            // https://docs.soliditylang.org/en/v0.8.20/control-structures.html#panic-via-assert-and-error-via-require
            /// @solidity memory-safe-assembly
            assembly {
                invalid()
            }
        }
    }
}

File 6 of 18 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

File 7 of 18 : Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error AddressInsufficientBalance(address account);

    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedInnerCall();

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert AddressInsufficientBalance(address(this));
        }

        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert FailedInnerCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {FailedInnerCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert AddressInsufficientBalance(address(this));
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
     * unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {FailedInnerCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert FailedInnerCall();
        }
    }
}

File 8 of 18 : Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

File 9 of 18 : ECDSA.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     */
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address, RecoverError, bytes32) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}

File 10 of 18 : EIP712.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/EIP712.sol)

pragma solidity ^0.8.20;

import {MessageHashUtils} from "./MessageHashUtils.sol";
import {ShortStrings, ShortString} from "../ShortStrings.sol";
import {IERC5267} from "../../interfaces/IERC5267.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
 * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
 * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
 * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
 * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
 * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
 *
 * @custom:oz-upgrades-unsafe-allow state-variable-immutable
 */
abstract contract EIP712 is IERC5267 {
    using ShortStrings for *;

    bytes32 private constant TYPE_HASH =
        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");

    // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
    // invalidate the cached domain separator if the chain id changes.
    bytes32 private immutable _cachedDomainSeparator;
    uint256 private immutable _cachedChainId;
    address private immutable _cachedThis;

    bytes32 private immutable _hashedName;
    bytes32 private immutable _hashedVersion;

    ShortString private immutable _name;
    ShortString private immutable _version;
    string private _nameFallback;
    string private _versionFallback;

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(string memory name, string memory version) {
        _name = name.toShortStringWithFallback(_nameFallback);
        _version = version.toShortStringWithFallback(_versionFallback);
        _hashedName = keccak256(bytes(name));
        _hashedVersion = keccak256(bytes(version));

        _cachedChainId = block.chainid;
        _cachedDomainSeparator = _buildDomainSeparator();
        _cachedThis = address(this);
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
            return _cachedDomainSeparator;
        } else {
            return _buildDomainSeparator();
        }
    }

    function _buildDomainSeparator() private view returns (bytes32) {
        return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
    }

    /**
     * @dev See {IERC-5267}.
     */
    function eip712Domain()
        public
        view
        virtual
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        )
    {
        return (
            hex"0f", // 01111
            _EIP712Name(),
            _EIP712Version(),
            block.chainid,
            address(this),
            bytes32(0),
            new uint256[](0)
        );
    }

    /**
     * @dev The name parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _name which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Name() internal view returns (string memory) {
        return _name.toStringWithFallback(_nameFallback);
    }

    /**
     * @dev The version parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _version which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Version() internal view returns (string memory) {
        return _version.toStringWithFallback(_versionFallback);
    }
}

File 11 of 18 : MessageHashUtils.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol)

pragma solidity ^0.8.20;

import {Strings} from "../Strings.sol";

/**
 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
 *
 * The library provides methods for generating a hash of a message that conforms to the
 * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
 * specifications.
 */
library MessageHashUtils {
    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing a bytes32 `messageHash` with
     * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
     * keccak256, although any bytes32 value can be safely used because the final digest will
     * be re-hashed.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
            mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
            digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing an arbitrary `message` with
     * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
        return
            keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x00` (data with intended validator).
     *
     * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
     * `validator` address. Then hashing the result.
     *
     * See {ECDSA-recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(hex"19_00", validator, data));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`).
     *
     * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
     * `\x19\x01` and hashing the result. It corresponds to the hash signed by the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
     *
     * See {ECDSA-recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, hex"19_01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            digest := keccak256(ptr, 0x42)
        }
    }
}

File 12 of 18 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 13 of 18 : SignedMath.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

File 14 of 18 : Nonces.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol)
pragma solidity ^0.8.20;

/**
 * @dev Provides tracking nonces for addresses. Nonces will only increment.
 */
abstract contract Nonces {
    /**
     * @dev The nonce used for an `account` is not the expected current nonce.
     */
    error InvalidAccountNonce(address account, uint256 currentNonce);

    mapping(address account => uint256) private _nonces;

    /**
     * @dev Returns the next unused nonce for an address.
     */
    function nonces(address owner) public view virtual returns (uint256) {
        return _nonces[owner];
    }

    /**
     * @dev Consumes a nonce.
     *
     * Returns the current value and increments nonce.
     */
    function _useNonce(address owner) internal virtual returns (uint256) {
        // For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be
        // decremented or reset. This guarantees that the nonce never overflows.
        unchecked {
            // It is important to do x++ and not ++x here.
            return _nonces[owner]++;
        }
    }

    /**
     * @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`.
     */
    function _useCheckedNonce(address owner, uint256 nonce) internal virtual {
        uint256 current = _useNonce(owner);
        if (nonce != current) {
            revert InvalidAccountNonce(owner, current);
        }
    }
}

File 15 of 18 : Pausable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Pausable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which allows children to implement an emergency stop
 * mechanism that can be triggered by an authorized account.
 *
 * This module is used through inheritance. It will make available the
 * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
 * the functions of your contract. Note that they will not be pausable by
 * simply including this module, only once the modifiers are put in place.
 */
abstract contract Pausable is Context {
    bool private _paused;

    /**
     * @dev Emitted when the pause is triggered by `account`.
     */
    event Paused(address account);

    /**
     * @dev Emitted when the pause is lifted by `account`.
     */
    event Unpaused(address account);

    /**
     * @dev The operation failed because the contract is paused.
     */
    error EnforcedPause();

    /**
     * @dev The operation failed because the contract is not paused.
     */
    error ExpectedPause();

    /**
     * @dev Initializes the contract in unpaused state.
     */
    constructor() {
        _paused = false;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is not paused.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    modifier whenNotPaused() {
        _requireNotPaused();
        _;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is paused.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    modifier whenPaused() {
        _requirePaused();
        _;
    }

    /**
     * @dev Returns true if the contract is paused, and false otherwise.
     */
    function paused() public view virtual returns (bool) {
        return _paused;
    }

    /**
     * @dev Throws if the contract is paused.
     */
    function _requireNotPaused() internal view virtual {
        if (paused()) {
            revert EnforcedPause();
        }
    }

    /**
     * @dev Throws if the contract is not paused.
     */
    function _requirePaused() internal view virtual {
        if (!paused()) {
            revert ExpectedPause();
        }
    }

    /**
     * @dev Triggers stopped state.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    function _pause() internal virtual whenNotPaused {
        _paused = true;
        emit Paused(_msgSender());
    }

    /**
     * @dev Returns to normal state.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    function _unpause() internal virtual whenPaused {
        _paused = false;
        emit Unpaused(_msgSender());
    }
}

File 16 of 18 : ShortStrings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ShortStrings.sol)

pragma solidity ^0.8.20;

import {StorageSlot} from "./StorageSlot.sol";

// | string  | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   |
// | length  | 0x                                                              BB |
type ShortString is bytes32;

/**
 * @dev This library provides functions to convert short memory strings
 * into a `ShortString` type that can be used as an immutable variable.
 *
 * Strings of arbitrary length can be optimized using this library if
 * they are short enough (up to 31 bytes) by packing them with their
 * length (1 byte) in a single EVM word (32 bytes). Additionally, a
 * fallback mechanism can be used for every other case.
 *
 * Usage example:
 *
 * ```solidity
 * contract Named {
 *     using ShortStrings for *;
 *
 *     ShortString private immutable _name;
 *     string private _nameFallback;
 *
 *     constructor(string memory contractName) {
 *         _name = contractName.toShortStringWithFallback(_nameFallback);
 *     }
 *
 *     function name() external view returns (string memory) {
 *         return _name.toStringWithFallback(_nameFallback);
 *     }
 * }
 * ```
 */
library ShortStrings {
    // Used as an identifier for strings longer than 31 bytes.
    bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;

    error StringTooLong(string str);
    error InvalidShortString();

    /**
     * @dev Encode a string of at most 31 chars into a `ShortString`.
     *
     * This will trigger a `StringTooLong` error is the input string is too long.
     */
    function toShortString(string memory str) internal pure returns (ShortString) {
        bytes memory bstr = bytes(str);
        if (bstr.length > 31) {
            revert StringTooLong(str);
        }
        return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
    }

    /**
     * @dev Decode a `ShortString` back to a "normal" string.
     */
    function toString(ShortString sstr) internal pure returns (string memory) {
        uint256 len = byteLength(sstr);
        // using `new string(len)` would work locally but is not memory safe.
        string memory str = new string(32);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(str, len)
            mstore(add(str, 0x20), sstr)
        }
        return str;
    }

    /**
     * @dev Return the length of a `ShortString`.
     */
    function byteLength(ShortString sstr) internal pure returns (uint256) {
        uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
        if (result > 31) {
            revert InvalidShortString();
        }
        return result;
    }

    /**
     * @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
     */
    function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
        if (bytes(value).length < 32) {
            return toShortString(value);
        } else {
            StorageSlot.getStringSlot(store).value = value;
            return ShortString.wrap(FALLBACK_SENTINEL);
        }
    }

    /**
     * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
     */
    function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return toString(value);
        } else {
            return store;
        }
    }

    /**
     * @dev Return the length of a string that was encoded to `ShortString` or written to storage using
     * {setWithFallback}.
     *
     * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
     * actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
     */
    function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return byteLength(value);
        } else {
            return bytes(store).length;
        }
    }
}

File 17 of 18 : StorageSlot.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }
}

File 18 of 18 : Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

Settings
{
  "evmVersion": "paris",
  "optimizer": {
    "enabled": false,
    "runs": 200
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  }
}

Contract ABI

[{"inputs":[{"internalType":"uint256","name":"initialClaimAmountWei","type":"uint256"},{"internalType":"address","name":"initialOwner","type":"address"},{"internalType":"contract ERC2771Forwarder","name":"forwarder","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"ClaimTransferFailed","type":"error"},{"inputs":[],"name":"EnforcedPause","type":"error"},{"inputs":[],"name":"ExpectedPause","type":"error"},{"inputs":[],"name":"IsNotACaller","type":"error"},{"inputs":[],"name":"NotEnoughtFunds","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"TriedToClaimNothig","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"","type":"address"},{"indexed":false,"internalType":"uint256","name":"","type":"uint256"}],"name":"Claimed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"","type":"address"},{"indexed":false,"internalType":"uint256","name":"","type":"uint256"}],"name":"Received","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"inputs":[{"internalType":"address","name":"caller","type":"address"}],"name":"addCaller","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"claim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"getClaimAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"forwarder","type":"address"}],"name":"isTrustedForwarder","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"caller","type":"address"}],"name":"removeCaller","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amountWei","type":"uint256"}],"name":"setClaimAmount","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"trustedForwarder","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"unpause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]

60a06040523480156200001157600080fd5b50604051620011b1380380620011b18339818101604052810190620000379190620002ce565b81818073ffffffffffffffffffffffffffffffffffffffff1660808173ffffffffffffffffffffffffffffffffffffffff16815250505060008060006101000a81548160ff021916908315150217905550600073ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1603620000fd5760006040517f1e4fbdf7000000000000000000000000000000000000000000000000000000008152600401620000f491906200033b565b60405180910390fd5b6200010e816200011f60201b60201c565b508260018190555050505062000358565b60008060019054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905081600060016101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508173ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e060405160405180910390a35050565b600080fd5b6000819050919050565b620001fe81620001e9565b81146200020a57600080fd5b50565b6000815190506200021e81620001f3565b92915050565b600073ffffffffffffffffffffffffffffffffffffffff82169050919050565b6000620002518262000224565b9050919050565b620002638162000244565b81146200026f57600080fd5b50565b600081519050620002838162000258565b92915050565b6000620002968262000244565b9050919050565b620002a88162000289565b8114620002b457600080fd5b50565b600081519050620002c8816200029d565b92915050565b600080600060608486031215620002ea57620002e9620001e4565b5b6000620002fa868287016200020d565b93505060206200030d8682870162000272565b92505060406200032086828701620002b7565b9150509250925092565b620003358162000244565b82525050565b60006020820190506200035260008301846200032a565b92915050565b608051610e3d6200037460003960006105ba0152610e3d6000f3fe6080604052600436106100e15760003560e01c80637da0a8771161007f578063b1c7ef0c11610059578063b1c7ef0c14610294578063eef21cd2146102bd578063f2fde38b146102e6578063f3fef3a31461030f57610121565b80637da0a877146102275780638456cb59146102525780638da5cb5b1461026957610121565b80635c975abb116100bb5780635c975abb1461019157806371127ed2146101bc578063715018a6146101e7578063747293fb146101fe57610121565b80633f4ba83a146101265780634e71d92d1461013d578063572b6c051461015457610121565b36610121577f88a5966d370b9919b20f3e2c13ff65706f196a4e32cc2c12bf57088f885258743334604051610117929190610b30565b60405180910390a1005b600080fd5b34801561013257600080fd5b5061013b610338565b005b34801561014957600080fd5b5061015261034a565b005b34801561016057600080fd5b5061017b60048036038101906101769190610b8a565b6104e0565b6040516101889190610bd2565b60405180910390f35b34801561019d57600080fd5b506101a661051f565b6040516101b39190610bd2565b60405180910390f35b3480156101c857600080fd5b506101d1610535565b6040516101de9190610bed565b60405180910390f35b3480156101f357600080fd5b506101fc61053f565b005b34801561020a57600080fd5b5061022560048036038101906102209190610b8a565b610553565b005b34801561023357600080fd5b5061023c6105b6565b6040516102499190610c08565b60405180910390f35b34801561025e57600080fd5b506102676105de565b005b34801561027557600080fd5b5061027e6105f0565b60405161028b9190610c08565b60405180910390f35b3480156102a057600080fd5b506102bb60048036038101906102b69190610c4f565b610619565b005b3480156102c957600080fd5b506102e460048036038101906102df9190610b8a565b61062b565b005b3480156102f257600080fd5b5061030d60048036038101906103089190610b8a565b61068e565b005b34801561031b57600080fd5b5061033660048036038101906103319190610c7c565b610714565b005b6103406107a1565b610348610828565b565b61035261088a565b600260003273ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200190815260200160002060009054906101000a900460ff166103d5576040517fbd43a1a900000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60006103df6108cb565b905060006001541161041d576040517f5ae8b52900000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b600154471015610459576040517fc1463a4000000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b8073ffffffffffffffffffffffffffffffffffffffff166108fc6001549081150290604051600060405180830381858888f193505050501580156104a1573d6000803e3d6000fd5b507fd8138f8a3f377c5259ca548e70e4c2de94f129f5a11036a15b69513cba2b426a816001546040516104d5929190610b30565b60405180910390a150565b60006104ea6105b6565b73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff16149050919050565b60008060009054906101000a900460ff16905090565b6000600154905090565b6105476107a1565b61055160006108da565b565b61055b6107a1565b6001600260008373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200190815260200160002060006101000a81548160ff02191690831515021790555050565b60007f0000000000000000000000000000000000000000000000000000000000000000905090565b6105e66107a1565b6105ee61099f565b565b60008060019054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905090565b6106216107a1565b8060018190555050565b6106336107a1565b6000600260008373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200190815260200160002060006101000a81548160ff02191690831515021790555050565b6106966107a1565b600073ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff16036107085760006040517f1e4fbdf70000000000000000000000000000000000000000000000000000000081526004016106ff9190610c08565b60405180910390fd5b610711816108da565b50565b61071c6107a1565b80471015610756576040517fc1463a4000000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b8173ffffffffffffffffffffffffffffffffffffffff166108fc829081150290604051600060405180830381858888f1935050505015801561079c573d6000803e3d6000fd5b505050565b6107a96108cb565b73ffffffffffffffffffffffffffffffffffffffff166107c76105f0565b73ffffffffffffffffffffffffffffffffffffffff1614610826576107ea6108cb565b6040517f118cdaa700000000000000000000000000000000000000000000000000000000815260040161081d9190610c08565b60405180910390fd5b565b610830610a01565b60008060006101000a81548160ff0219169083151502179055507f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa6108736108cb565b6040516108809190610c08565b60405180910390a1565b61089261051f565b156108c9576040517fd93c066500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b565b60006108d5610a41565b905090565b60008060019054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905081600060016101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508173ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e060405160405180910390a35050565b6109a761088a565b60016000806101000a81548160ff0219169083151502179055507f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a2586109ea6108cb565b6040516109f79190610c08565b60405180910390a1565b610a0961051f565b610a3f576040517f8dfc202b00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b565b600080600036905090506000610a55610ab6565b9050610a60336104e0565b8015610a6c5750808210155b15610aa6576000368284610a809190610ceb565b908092610a8f93929190610d29565b90610a9a9190610da8565b60601c92505050610ab3565b610aae610ac5565b925050505b90565b6000610ac0610acd565b905090565b600033905090565b60006014905090565b600073ffffffffffffffffffffffffffffffffffffffff82169050919050565b6000610b0182610ad6565b9050919050565b610b1181610af6565b82525050565b6000819050919050565b610b2a81610b17565b82525050565b6000604082019050610b456000830185610b08565b610b526020830184610b21565b9392505050565b600080fd5b610b6781610af6565b8114610b7257600080fd5b50565b600081359050610b8481610b5e565b92915050565b600060208284031215610ba057610b9f610b59565b5b6000610bae84828501610b75565b91505092915050565b60008115159050919050565b610bcc81610bb7565b82525050565b6000602082019050610be76000830184610bc3565b92915050565b6000602082019050610c026000830184610b21565b92915050565b6000602082019050610c1d6000830184610b08565b92915050565b610c2c81610b17565b8114610c3757600080fd5b50565b600081359050610c4981610c23565b92915050565b600060208284031215610c6557610c64610b59565b5b6000610c7384828501610c3a565b91505092915050565b60008060408385031215610c9357610c92610b59565b5b6000610ca185828601610b75565b9250506020610cb285828601610c3a565b9150509250929050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b6000610cf682610b17565b9150610d0183610b17565b9250828203905081811115610d1957610d18610cbc565b5b92915050565b600080fd5b600080fd5b60008085851115610d3d57610d3c610d1f565b5b83861115610d4e57610d4d610d24565b5b6001850283019150848603905094509492505050565b600082905092915050565b60007fffffffffffffffffffffffffffffffffffffffff00000000000000000000000082169050919050565b600082821b905092915050565b6000610db48383610d64565b82610dbf8135610d6f565b92506014821015610dff57610dfa7fffffffffffffffffffffffffffffffffffffffff00000000000000000000000083601403600802610d9b565b831692505b50509291505056fea264697066735822122061ef5c8040ef1d8bc2859c0fe49206b87f79a53e19b768ba2018065d3452d3d464736f6c6343000818003300000000000000000000000000000000000000000000000000038d7ea4c68000000000000000000000000000cad1e004888734478936c0d08afe499d1217eb19000000000000000000000000875e5eb2236d1f92dc3f690f97d50dc667d020e9

Deployed Bytecode

0x6080604052600436106100e15760003560e01c80637da0a8771161007f578063b1c7ef0c11610059578063b1c7ef0c14610294578063eef21cd2146102bd578063f2fde38b146102e6578063f3fef3a31461030f57610121565b80637da0a877146102275780638456cb59146102525780638da5cb5b1461026957610121565b80635c975abb116100bb5780635c975abb1461019157806371127ed2146101bc578063715018a6146101e7578063747293fb146101fe57610121565b80633f4ba83a146101265780634e71d92d1461013d578063572b6c051461015457610121565b36610121577f88a5966d370b9919b20f3e2c13ff65706f196a4e32cc2c12bf57088f885258743334604051610117929190610b30565b60405180910390a1005b600080fd5b34801561013257600080fd5b5061013b610338565b005b34801561014957600080fd5b5061015261034a565b005b34801561016057600080fd5b5061017b60048036038101906101769190610b8a565b6104e0565b6040516101889190610bd2565b60405180910390f35b34801561019d57600080fd5b506101a661051f565b6040516101b39190610bd2565b60405180910390f35b3480156101c857600080fd5b506101d1610535565b6040516101de9190610bed565b60405180910390f35b3480156101f357600080fd5b506101fc61053f565b005b34801561020a57600080fd5b5061022560048036038101906102209190610b8a565b610553565b005b34801561023357600080fd5b5061023c6105b6565b6040516102499190610c08565b60405180910390f35b34801561025e57600080fd5b506102676105de565b005b34801561027557600080fd5b5061027e6105f0565b60405161028b9190610c08565b60405180910390f35b3480156102a057600080fd5b506102bb60048036038101906102b69190610c4f565b610619565b005b3480156102c957600080fd5b506102e460048036038101906102df9190610b8a565b61062b565b005b3480156102f257600080fd5b5061030d60048036038101906103089190610b8a565b61068e565b005b34801561031b57600080fd5b5061033660048036038101906103319190610c7c565b610714565b005b6103406107a1565b610348610828565b565b61035261088a565b600260003273ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200190815260200160002060009054906101000a900460ff166103d5576040517fbd43a1a900000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60006103df6108cb565b905060006001541161041d576040517f5ae8b52900000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b600154471015610459576040517fc1463a4000000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b8073ffffffffffffffffffffffffffffffffffffffff166108fc6001549081150290604051600060405180830381858888f193505050501580156104a1573d6000803e3d6000fd5b507fd8138f8a3f377c5259ca548e70e4c2de94f129f5a11036a15b69513cba2b426a816001546040516104d5929190610b30565b60405180910390a150565b60006104ea6105b6565b73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff16149050919050565b60008060009054906101000a900460ff16905090565b6000600154905090565b6105476107a1565b61055160006108da565b565b61055b6107a1565b6001600260008373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200190815260200160002060006101000a81548160ff02191690831515021790555050565b60007f000000000000000000000000875e5eb2236d1f92dc3f690f97d50dc667d020e9905090565b6105e66107a1565b6105ee61099f565b565b60008060019054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905090565b6106216107a1565b8060018190555050565b6106336107a1565b6000600260008373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200190815260200160002060006101000a81548160ff02191690831515021790555050565b6106966107a1565b600073ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff16036107085760006040517f1e4fbdf70000000000000000000000000000000000000000000000000000000081526004016106ff9190610c08565b60405180910390fd5b610711816108da565b50565b61071c6107a1565b80471015610756576040517fc1463a4000000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b8173ffffffffffffffffffffffffffffffffffffffff166108fc829081150290604051600060405180830381858888f1935050505015801561079c573d6000803e3d6000fd5b505050565b6107a96108cb565b73ffffffffffffffffffffffffffffffffffffffff166107c76105f0565b73ffffffffffffffffffffffffffffffffffffffff1614610826576107ea6108cb565b6040517f118cdaa700000000000000000000000000000000000000000000000000000000815260040161081d9190610c08565b60405180910390fd5b565b610830610a01565b60008060006101000a81548160ff0219169083151502179055507f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa6108736108cb565b6040516108809190610c08565b60405180910390a1565b61089261051f565b156108c9576040517fd93c066500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b565b60006108d5610a41565b905090565b60008060019054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905081600060016101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508173ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e060405160405180910390a35050565b6109a761088a565b60016000806101000a81548160ff0219169083151502179055507f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a2586109ea6108cb565b6040516109f79190610c08565b60405180910390a1565b610a0961051f565b610a3f576040517f8dfc202b00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b565b600080600036905090506000610a55610ab6565b9050610a60336104e0565b8015610a6c5750808210155b15610aa6576000368284610a809190610ceb565b908092610a8f93929190610d29565b90610a9a9190610da8565b60601c92505050610ab3565b610aae610ac5565b925050505b90565b6000610ac0610acd565b905090565b600033905090565b60006014905090565b600073ffffffffffffffffffffffffffffffffffffffff82169050919050565b6000610b0182610ad6565b9050919050565b610b1181610af6565b82525050565b6000819050919050565b610b2a81610b17565b82525050565b6000604082019050610b456000830185610b08565b610b526020830184610b21565b9392505050565b600080fd5b610b6781610af6565b8114610b7257600080fd5b50565b600081359050610b8481610b5e565b92915050565b600060208284031215610ba057610b9f610b59565b5b6000610bae84828501610b75565b91505092915050565b60008115159050919050565b610bcc81610bb7565b82525050565b6000602082019050610be76000830184610bc3565b92915050565b6000602082019050610c026000830184610b21565b92915050565b6000602082019050610c1d6000830184610b08565b92915050565b610c2c81610b17565b8114610c3757600080fd5b50565b600081359050610c4981610c23565b92915050565b600060208284031215610c6557610c64610b59565b5b6000610c7384828501610c3a565b91505092915050565b60008060408385031215610c9357610c92610b59565b5b6000610ca185828601610b75565b9250506020610cb285828601610c3a565b9150509250929050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b6000610cf682610b17565b9150610d0183610b17565b9250828203905081811115610d1957610d18610cbc565b5b92915050565b600080fd5b600080fd5b60008085851115610d3d57610d3c610d1f565b5b83861115610d4e57610d4d610d24565b5b6001850283019150848603905094509492505050565b600082905092915050565b60007fffffffffffffffffffffffffffffffffffffffff00000000000000000000000082169050919050565b600082821b905092915050565b6000610db48383610d64565b82610dbf8135610d6f565b92506014821015610dff57610dfa7fffffffffffffffffffffffffffffffffffffffff00000000000000000000000083601403600802610d9b565b831692505b50509291505056fea264697066735822122061ef5c8040ef1d8bc2859c0fe49206b87f79a53e19b768ba2018065d3452d3d464736f6c63430008180033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

00000000000000000000000000000000000000000000000000038d7ea4c68000000000000000000000000000cad1e004888734478936c0d08afe499d1217eb19000000000000000000000000875e5eb2236d1f92dc3f690f97d50dc667d020e9

-----Decoded View---------------
Arg [0] : initialClaimAmountWei (uint256): 1000000000000000
Arg [1] : initialOwner (address): 0xCAD1E004888734478936c0D08afe499D1217EB19
Arg [2] : forwarder (address): 0x875E5Eb2236d1F92dC3F690f97D50Dc667D020e9

-----Encoded View---------------
3 Constructor Arguments found :
Arg [0] : 00000000000000000000000000000000000000000000000000038d7ea4c68000
Arg [1] : 000000000000000000000000cad1e004888734478936c0d08afe499d1217eb19
Arg [2] : 000000000000000000000000875e5eb2236d1f92dc3f690f97d50dc667d020e9


Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.