Source Code
Overview
ETH Balance
0 ETH
More Info
ContractCreator
Multichain Info
N/A
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Latest 1 internal transaction
Advanced mode:
Parent Transaction Hash | Method | Block |
From
|
To
|
|||
---|---|---|---|---|---|---|---|
0x60808060 | 5468950 | 374 days ago | Contract Creation | 0 ETH |
Loading...
Loading
Similar Match Source Code This contract matches the deployed Bytecode of the Source Code for Contract 0x9d961A1b...abF4861C7 The constructor portion of the code might be different and could alter the actual behaviour of the contract
Contract Name:
MultichainECDSAValidator
Compiler Version
v0.8.17+commit.8df45f5f
Optimization Enabled:
Yes with 800 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity 0.8.17; import {UserOperation} from "@account-abstraction/contracts/interfaces/UserOperation.sol"; import {EcdsaOwnershipRegistryModule} from "./EcdsaOwnershipRegistryModule.sol"; import {UserOperationLib} from "@account-abstraction/contracts/interfaces/UserOperation.sol"; import {MerkleProof} from "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol"; import {_packValidationData} from "@account-abstraction/contracts/core/Helpers.sol"; /** * @title ECDSA Multichain Validator module for Biconomy Smart Accounts. * @dev Biconomy’s Multichain Validator module enables use cases which * require several actions to be authorized for several chains with just one * signature required from user. * - Leverages Merkle Trees to efficiently manage large datasets * - Inherits from the ECDSA Ownership Registry Module * - Compatible with Biconomy Modular Interface v 0.1 * - Does not introduce any additional security trade-offs compared to the * vanilla ERC-4337 flow. * @author Fil Makarov - <[email protected]> */ contract MultichainECDSAValidator is EcdsaOwnershipRegistryModule { using UserOperationLib for UserOperation; /** * @dev Validates User Operation. * leaf = validUntil + validAfter + userOpHash * If the leaf is the part of the Tree with a root provided, userOp considered * to be authorized by user * @param userOp user operation to be validated * @param userOpHash hash of the userOp provided by the EP */ function validateUserOp( UserOperation calldata userOp, bytes32 userOpHash ) external view virtual override returns (uint256) { (bytes memory moduleSignature, ) = abi.decode( userOp.signature, (bytes, address) ); address sender; //read sender from userOp, which is first userOp member (saves gas) assembly { sender := calldataload(userOp) } if (moduleSignature.length == 65) { //it's not a multichain signature return _verifySignature( userOpHash, moduleSignature, address(uint160(sender)) ) ? VALIDATION_SUCCESS : SIG_VALIDATION_FAILED; } //otherwise it is a multichain signature ( uint48 validUntil, uint48 validAfter, bytes32 merkleTreeRoot, bytes32[] memory merkleProof, bytes memory multichainSignature ) = abi.decode( moduleSignature, (uint48, uint48, bytes32, bytes32[], bytes) ); //make a leaf out of userOpHash, validUntil and validAfter bytes32 leaf = keccak256( abi.encodePacked(validUntil, validAfter, userOpHash) ); if (!MerkleProof.verify(merkleProof, merkleTreeRoot, leaf)) { revert("Invalid UserOp"); } return _verifySignature( merkleTreeRoot, multichainSignature, address(uint160(sender)) ) ? _packValidationData( false, //sigVerificationFailed = false validUntil == 0 ? type(uint48).max : validUntil, validAfter ) : SIG_VALIDATION_FAILED; } /** * Inherits isValideSignature method from EcdsaOwnershipRegistryModule * isValidSignature is intended to work not with a multichain signature * but with a regular ecdsa signature over a message hash */ }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.12; /* solhint-disable no-inline-assembly */ /** * returned data from validateUserOp. * validateUserOp returns a uint256, with is created by `_packedValidationData` and parsed by `_parseValidationData` * @param aggregator - address(0) - the account validated the signature by itself. * address(1) - the account failed to validate the signature. * otherwise - this is an address of a signature aggregator that must be used to validate the signature. * @param validAfter - this UserOp is valid only after this timestamp. * @param validaUntil - this UserOp is valid only up to this timestamp. */ struct ValidationData { address aggregator; uint48 validAfter; uint48 validUntil; } //extract sigFailed, validAfter, validUntil. // also convert zero validUntil to type(uint48).max function _parseValidationData(uint validationData) pure returns (ValidationData memory data) { address aggregator = address(uint160(validationData)); uint48 validUntil = uint48(validationData >> 160); if (validUntil == 0) { validUntil = type(uint48).max; } uint48 validAfter = uint48(validationData >> (48 + 160)); return ValidationData(aggregator, validAfter, validUntil); } // intersect account and paymaster ranges. function _intersectTimeRange(uint256 validationData, uint256 paymasterValidationData) pure returns (ValidationData memory) { ValidationData memory accountValidationData = _parseValidationData(validationData); ValidationData memory pmValidationData = _parseValidationData(paymasterValidationData); address aggregator = accountValidationData.aggregator; if (aggregator == address(0)) { aggregator = pmValidationData.aggregator; } uint48 validAfter = accountValidationData.validAfter; uint48 validUntil = accountValidationData.validUntil; uint48 pmValidAfter = pmValidationData.validAfter; uint48 pmValidUntil = pmValidationData.validUntil; if (validAfter < pmValidAfter) validAfter = pmValidAfter; if (validUntil > pmValidUntil) validUntil = pmValidUntil; return ValidationData(aggregator, validAfter, validUntil); } /** * helper to pack the return value for validateUserOp * @param data - the ValidationData to pack */ function _packValidationData(ValidationData memory data) pure returns (uint256) { return uint160(data.aggregator) | (uint256(data.validUntil) << 160) | (uint256(data.validAfter) << (160 + 48)); } /** * helper to pack the return value for validateUserOp, when not using an aggregator * @param sigFailed - true for signature failure, false for success * @param validUntil last timestamp this UserOperation is valid (or zero for infinite) * @param validAfter first timestamp this UserOperation is valid */ function _packValidationData(bool sigFailed, uint48 validUntil, uint48 validAfter) pure returns (uint256) { return (sigFailed ? 1 : 0) | (uint256(validUntil) << 160) | (uint256(validAfter) << (160 + 48)); } /** * keccak function over calldata. * @dev copy calldata into memory, do keccak and drop allocated memory. Strangely, this is more efficient than letting solidity do it. */ function calldataKeccak(bytes calldata data) pure returns (bytes32 ret) { assembly { let mem := mload(0x40) let len := data.length calldatacopy(mem, data.offset, len) ret := keccak256(mem, len) } }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.12; /* solhint-disable no-inline-assembly */ import {calldataKeccak} from "../core/Helpers.sol"; /** * User Operation struct * @param sender the sender account of this request. * @param nonce unique value the sender uses to verify it is not a replay. * @param initCode if set, the account contract will be created by this constructor/ * @param callData the method call to execute on this account. * @param callGasLimit the gas limit passed to the callData method call. * @param verificationGasLimit gas used for validateUserOp and validatePaymasterUserOp. * @param preVerificationGas gas not calculated by the handleOps method, but added to the gas paid. Covers batch overhead. * @param maxFeePerGas same as EIP-1559 gas parameter. * @param maxPriorityFeePerGas same as EIP-1559 gas parameter. * @param paymasterAndData if set, this field holds the paymaster address and paymaster-specific data. the paymaster will pay for the transaction instead of the sender. * @param signature sender-verified signature over the entire request, the EntryPoint address and the chain ID. */ struct UserOperation { address sender; uint256 nonce; bytes initCode; bytes callData; uint256 callGasLimit; uint256 verificationGasLimit; uint256 preVerificationGas; uint256 maxFeePerGas; uint256 maxPriorityFeePerGas; bytes paymasterAndData; bytes signature; } /** * Utility functions helpful when working with UserOperation structs. */ library UserOperationLib { function getSender(UserOperation calldata userOp) internal pure returns (address) { address data; //read sender from userOp, which is first userOp member (saves 800 gas...) assembly {data := calldataload(userOp)} return address(uint160(data)); } //relayer/block builder might submit the TX with higher priorityFee, but the user should not // pay above what he signed for. function gasPrice(UserOperation calldata userOp) internal view returns (uint256) { unchecked { uint256 maxFeePerGas = userOp.maxFeePerGas; uint256 maxPriorityFeePerGas = userOp.maxPriorityFeePerGas; if (maxFeePerGas == maxPriorityFeePerGas) { //legacy mode (for networks that don't support basefee opcode) return maxFeePerGas; } return min(maxFeePerGas, maxPriorityFeePerGas + block.basefee); } } function pack(UserOperation calldata userOp) internal pure returns (bytes memory ret) { address sender = getSender(userOp); uint256 nonce = userOp.nonce; bytes32 hashInitCode = calldataKeccak(userOp.initCode); bytes32 hashCallData = calldataKeccak(userOp.callData); uint256 callGasLimit = userOp.callGasLimit; uint256 verificationGasLimit = userOp.verificationGasLimit; uint256 preVerificationGas = userOp.preVerificationGas; uint256 maxFeePerGas = userOp.maxFeePerGas; uint256 maxPriorityFeePerGas = userOp.maxPriorityFeePerGas; bytes32 hashPaymasterAndData = calldataKeccak(userOp.paymasterAndData); return abi.encode( sender, nonce, hashInitCode, hashCallData, callGasLimit, verificationGasLimit, preVerificationGas, maxFeePerGas, maxPriorityFeePerGas, hashPaymasterAndData ); } function hash(UserOperation calldata userOp) internal pure returns (bytes32) { return keccak256(pack(userOp)); } function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.0; import "../Strings.sol"; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS, InvalidSignatureV // Deprecated in v4.8 } function _throwError(RecoverError error) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert("ECDSA: invalid signature"); } else if (error == RecoverError.InvalidSignatureLength) { revert("ECDSA: invalid signature length"); } else if (error == RecoverError.InvalidSignatureS) { revert("ECDSA: invalid signature 's' value"); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature` or error string. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, signature); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. * * _Available since v4.2._ */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, r, vs); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. * * _Available since v4.3._ */ function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature); } return (signer, RecoverError.NoError); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, v, r, s); _throwError(error); return recovered; } /** * @dev Returns an Ethereum Signed Message, created from a `hash`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) { // 32 is the length in bytes of hash, // enforced by the type signature above /// @solidity memory-safe-assembly assembly { mstore(0x00, "\x19Ethereum Signed Message:\n32") mstore(0x1c, hash) message := keccak256(0x00, 0x3c) } } /** * @dev Returns an Ethereum Signed Message, created from `s`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s)); } /** * @dev Returns an Ethereum Signed Typed Data, created from a * `domainSeparator` and a `structHash`. This produces hash corresponding * to the one signed with the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] * JSON-RPC method as part of EIP-712. * * See {recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) { /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) mstore(ptr, "\x19\x01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) data := keccak256(ptr, 0x42) } } /** * @dev Returns an Ethereum Signed Data with intended validator, created from a * `validator` and `data` according to the version 0 of EIP-191. * * See {recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19\x00", validator, data)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.2) (utils/cryptography/MerkleProof.sol) pragma solidity ^0.8.0; /** * @dev These functions deal with verification of Merkle Tree proofs. * * The tree and the proofs can be generated using our * https://github.com/OpenZeppelin/merkle-tree[JavaScript library]. * You will find a quickstart guide in the readme. * * WARNING: You should avoid using leaf values that are 64 bytes long prior to * hashing, or use a hash function other than keccak256 for hashing leaves. * This is because the concatenation of a sorted pair of internal nodes in * the merkle tree could be reinterpreted as a leaf value. * OpenZeppelin's JavaScript library generates merkle trees that are safe * against this attack out of the box. */ library MerkleProof { /** * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree * defined by `root`. For this, a `proof` must be provided, containing * sibling hashes on the branch from the leaf to the root of the tree. Each * pair of leaves and each pair of pre-images are assumed to be sorted. */ function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) { return processProof(proof, leaf) == root; } /** * @dev Calldata version of {verify} * * _Available since v4.7._ */ function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) { return processProofCalldata(proof, leaf) == root; } /** * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt * hash matches the root of the tree. When processing the proof, the pairs * of leafs & pre-images are assumed to be sorted. * * _Available since v4.4._ */ function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = _hashPair(computedHash, proof[i]); } return computedHash; } /** * @dev Calldata version of {processProof} * * _Available since v4.7._ */ function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = _hashPair(computedHash, proof[i]); } return computedHash; } /** * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}. * * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details. * * _Available since v4.7._ */ function multiProofVerify( bytes32[] memory proof, bool[] memory proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProof(proof, proofFlags, leaves) == root; } /** * @dev Calldata version of {multiProofVerify} * * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details. * * _Available since v4.7._ */ function multiProofVerifyCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProofCalldata(proof, proofFlags, leaves) == root; } /** * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false * respectively. * * CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer). * * _Available since v4.7._ */ function processMultiProof( bytes32[] memory proof, bool[] memory proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the merkle tree. uint256 leavesLen = leaves.length; uint256 proofLen = proof.length; uint256 totalHashes = proofFlags.length; // Check proof validity. require(leavesLen + proofLen - 1 == totalHashes, "MerkleProof: invalid multiproof"); // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](totalHashes); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < totalHashes; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]) : proof[proofPos++]; hashes[i] = _hashPair(a, b); } if (totalHashes > 0) { require(proofPos == proofLen, "MerkleProof: invalid multiproof"); unchecked { return hashes[totalHashes - 1]; } } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } /** * @dev Calldata version of {processMultiProof}. * * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details. * * _Available since v4.7._ */ function processMultiProofCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the merkle tree. uint256 leavesLen = leaves.length; uint256 proofLen = proof.length; uint256 totalHashes = proofFlags.length; // Check proof validity. require(leavesLen + proofLen - 1 == totalHashes, "MerkleProof: invalid multiproof"); // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](totalHashes); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < totalHashes; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]) : proof[proofPos++]; hashes[i] = _hashPair(a, b); } if (totalHashes > 0) { require(proofPos == proofLen, "MerkleProof: invalid multiproof"); unchecked { return hashes[totalHashes - 1]; } } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) { return a < b ? _efficientHash(a, b) : _efficientHash(b, a); } function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) { /// @solidity memory-safe-assembly assembly { mstore(0x00, a) mstore(0x20, b) value := keccak256(0x00, 0x40) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1, "Math: mulDiv overflow"); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.0; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol) pragma solidity ^0.8.0; import "./math/Math.sol"; import "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant _SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toString(int256 value) internal pure returns (string memory) { return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value)))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return keccak256(bytes(a)) == keccak256(bytes(b)); } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.17; import {UserOperation} from "@account-abstraction/contracts/interfaces/UserOperation.sol"; // interface for modules to verify singatures signed over userOpHash interface IAuthorizationModule { function validateUserOp( UserOperation calldata userOp, bytes32 userOpHash ) external returns (uint256 validationData); }
// SPDX-License-Identifier: LGPL-3.0-only pragma solidity 0.8.17; contract ISignatureValidatorConstants { // bytes4(keccak256("isValidSignature(bytes32,bytes)") bytes4 internal constant EIP1271_MAGIC_VALUE = 0x1626ba7e; } abstract contract ISignatureValidator is ISignatureValidatorConstants { /** * @dev Should return whether the signature provided is valid for the provided data * @param _dataHash Arbitrary length data signed on behalf of address(this) * @param _signature Signature byte array associated with _data * * MUST return the bytes4 magic value 0x1626ba7e when function passes. * MUST NOT modify state (using STATICCALL for solc < 0.5, view modifier for solc > 0.5) * MUST allow external calls */ function isValidSignature( bytes32 _dataHash, bytes memory _signature ) public view virtual returns (bytes4); }
// SPDX-License-Identifier: MIT pragma solidity 0.8.17; /* solhint-disable no-empty-blocks */ import {IAuthorizationModule} from "../interfaces/IAuthorizationModule.sol"; import {ISignatureValidator} from "../interfaces/ISignatureValidator.sol"; contract AuthorizationModulesConstants { uint256 internal constant VALIDATION_SUCCESS = 0; uint256 internal constant SIG_VALIDATION_FAILED = 1; } abstract contract BaseAuthorizationModule is IAuthorizationModule, ISignatureValidator, AuthorizationModulesConstants {}
// SPDX-License-Identifier: MIT pragma solidity 0.8.17; import {BaseAuthorizationModule} from "./BaseAuthorizationModule.sol"; import {UserOperation} from "@account-abstraction/contracts/interfaces/UserOperation.sol"; import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol"; /** * @title ECDSA ownership Authorization module for Biconomy Smart Accounts. * @dev Compatible with Biconomy Modular Interface v 0.1 * - It allows to validate user operations signed by EOA private key. * - EIP-1271 compatible (ensures Smart Account can validate signed messages). * - One owner per Smart Account. * - Does not support outdated eth_sign flow for cheaper validations * (see https://support.metamask.io/hc/en-us/articles/14764161421467-What-is-eth-sign-and-why-is-it-a-risk-) * !!!!!!! Only EOA owners supported, no Smart Account Owners * For Smart Contract Owners check SmartContractOwnership module instead * @author Fil Makarov - <[email protected]> */ contract EcdsaOwnershipRegistryModule is BaseAuthorizationModule { using ECDSA for bytes32; string public constant NAME = "ECDSA Ownership Registry Module"; string public constant VERSION = "0.2.0"; mapping(address => address) internal _smartAccountOwners; event OwnershipTransferred( address indexed smartAccount, address indexed oldOwner, address indexed newOwner ); error NoOwnerRegisteredForSmartAccount(address smartAccount); error AlreadyInitedForSmartAccount(address smartAccount); error WrongSignatureLength(); error NotEOA(address account); error ZeroAddressNotAllowedAsOwner(); /** * @dev Initializes the module for a Smart Account. * Should be used at a time of first enabling the module for a Smart Account. * @param eoaOwner The owner of the Smart Account. Should be EOA! */ function initForSmartAccount(address eoaOwner) external returns (address) { if (_smartAccountOwners[msg.sender] != address(0)) revert AlreadyInitedForSmartAccount(msg.sender); if (eoaOwner == address(0)) revert ZeroAddressNotAllowedAsOwner(); _smartAccountOwners[msg.sender] = eoaOwner; return address(this); } /** * @dev Sets/changes an for a Smart Account. * Should be called by Smart Account itself. * @param owner The owner of the Smart Account. */ function transferOwnership(address owner) external { if (_isSmartContract(owner)) revert NotEOA(owner); if (owner == address(0)) revert ZeroAddressNotAllowedAsOwner(); _transferOwnership(msg.sender, owner); } /** * @dev Renounces ownership * should be called by Smart Account. */ function renounceOwnership() external { _transferOwnership(msg.sender, address(0)); } /** * @dev Returns the owner of the Smart Account. Reverts for Smart Accounts without owners. * @param smartAccount Smart Account address. * @return owner The owner of the Smart Account. */ function getOwner(address smartAccount) external view returns (address) { address owner = _smartAccountOwners[smartAccount]; if (owner == address(0)) revert NoOwnerRegisteredForSmartAccount(smartAccount); return owner; } /** * @dev validates userOperation * @param userOp User Operation to be validated. * @param userOpHash Hash of the User Operation to be validated. * @return sigValidationResult 0 if signature is valid, SIG_VALIDATION_FAILED otherwise. */ function validateUserOp( UserOperation calldata userOp, bytes32 userOpHash ) external view virtual returns (uint256) { (bytes memory cleanEcdsaSignature, ) = abi.decode( userOp.signature, (bytes, address) ); if (_verifySignature(userOpHash, cleanEcdsaSignature, userOp.sender)) { return VALIDATION_SUCCESS; } return SIG_VALIDATION_FAILED; } /** * @dev Validates a signature for a message. * To be called from a Smart Account. * @param dataHash Exact hash of the data that was signed. * @param moduleSignature Signature to be validated. * @return EIP1271_MAGIC_VALUE if signature is valid, 0xffffffff otherwise. */ function isValidSignature( bytes32 dataHash, bytes memory moduleSignature ) public view virtual override returns (bytes4) { return isValidSignatureForAddress(dataHash, moduleSignature, msg.sender); } /** * @dev Validates a signature for a message signed by address. * @dev Also try dataHash.toEthSignedMessageHash() * @param dataHash hash of the data * @param moduleSignature Signature to be validated. * @param smartAccount expected signer Smart Account address. * @return EIP1271_MAGIC_VALUE if signature is valid, 0xffffffff otherwise. */ function isValidSignatureForAddress( bytes32 dataHash, bytes memory moduleSignature, address smartAccount ) public view virtual returns (bytes4) { if (_verifySignature(dataHash, moduleSignature, smartAccount)) { return EIP1271_MAGIC_VALUE; } return bytes4(0xffffffff); } /** * @dev Transfers ownership for smartAccount and emits an event * @param newOwner Smart Account address. */ function _transferOwnership( address smartAccount, address newOwner ) internal { address _oldOwner = _smartAccountOwners[smartAccount]; _smartAccountOwners[smartAccount] = newOwner; emit OwnershipTransferred(smartAccount, _oldOwner, newOwner); } /** * @dev Validates a signature for a message. * @dev Check if signature was made over dataHash.toEthSignedMessageHash() or just dataHash * The former is for personal_sign, the latter for the typed_data sign * Only EOA owners supported, no Smart Account Owners * For Smart Contract Owners check SmartContractOwnership Module instead * @param dataHash Hash of the data to be validated. * @param signature Signature to be validated. * @param smartAccount expected signer Smart Account address. * @return true if signature is valid, false otherwise. */ function _verifySignature( bytes32 dataHash, bytes memory signature, address smartAccount ) internal view returns (bool) { address expectedSigner = _smartAccountOwners[smartAccount]; if (expectedSigner == address(0)) revert NoOwnerRegisteredForSmartAccount(smartAccount); if (signature.length < 65) revert WrongSignatureLength(); address recovered = (dataHash.toEthSignedMessageHash()).recover( signature ); if (expectedSigner == recovered) { return true; } recovered = dataHash.recover(signature); if (expectedSigner == recovered) { return true; } return false; } /** * @dev Checks if the address provided is a smart contract. * @param account Address to be checked. */ function _isSmartContract(address account) internal view returns (bool) { uint256 size; assembly { size := extcodesize(account) } return size > 0; } }
{ "optimizer": { "enabled": true, "runs": 800 }, "viaIR": true, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "metadata": { "useLiteralContent": true }, "libraries": {} }
Contract ABI
API[{"inputs":[{"internalType":"address","name":"smartAccount","type":"address"}],"name":"AlreadyInitedForSmartAccount","type":"error"},{"inputs":[{"internalType":"address","name":"smartAccount","type":"address"}],"name":"NoOwnerRegisteredForSmartAccount","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"NotEOA","type":"error"},{"inputs":[],"name":"WrongSignatureLength","type":"error"},{"inputs":[],"name":"ZeroAddressNotAllowedAsOwner","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"smartAccount","type":"address"},{"indexed":true,"internalType":"address","name":"oldOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"inputs":[],"name":"NAME","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"VERSION","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"smartAccount","type":"address"}],"name":"getOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"eoaOwner","type":"address"}],"name":"initForSmartAccount","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"dataHash","type":"bytes32"},{"internalType":"bytes","name":"moduleSignature","type":"bytes"}],"name":"isValidSignature","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"dataHash","type":"bytes32"},{"internalType":"bytes","name":"moduleSignature","type":"bytes"},{"internalType":"address","name":"smartAccount","type":"address"}],"name":"isValidSignatureForAddress","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"bytes","name":"initCode","type":"bytes"},{"internalType":"bytes","name":"callData","type":"bytes"},{"internalType":"uint256","name":"callGasLimit","type":"uint256"},{"internalType":"uint256","name":"verificationGasLimit","type":"uint256"},{"internalType":"uint256","name":"preVerificationGas","type":"uint256"},{"internalType":"uint256","name":"maxFeePerGas","type":"uint256"},{"internalType":"uint256","name":"maxPriorityFeePerGas","type":"uint256"},{"internalType":"bytes","name":"paymasterAndData","type":"bytes"},{"internalType":"bytes","name":"signature","type":"bytes"}],"internalType":"struct UserOperation","name":"userOp","type":"tuple"},{"internalType":"bytes32","name":"userOpHash","type":"bytes32"}],"name":"validateUserOp","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"}]
Deployed Bytecode
0x6040608081526004908136101561001557600080fd5b6000803560e01c80631626ba7e1461040a5780632ede3bc014610388578063715018a614610318578063a3f4df7e146102c3578063f2fde38b1461020d578063f44c339d14610185578063fa5441611461012d578063ffa1ad74146100d45763fff35b721461008357600080fd5b346100cd576003199082823601126100cd5783359167ffffffffffffffff83116100d0576101609083360301126100cd57506020926100c691602435910161085d565b9051908152f35b80fd5b5080fd5b5090346100d057816003193601126100d0578051610129916100f58261044a565b600582527f302e322e300000000000000000000000000000000000000000000000000000006020830152519182918261053f565b0390f35b5082346100d05760203660031901126100d0576001600160a01b038381610152610506565b16938481528060205220541691821561016f576020838551908152f35b8351633d3fff5360e21b81529182015260249150fd5b5091346102095760603660031901126102095760243567ffffffffffffffff8111610205576101b790369083016104ba565b90604435936001600160a01b03851685036100cd5750926101db916020943561056b565b90517fffffffff000000000000000000000000000000000000000000000000000000009091168152f35b8380fd5b8280fd5b5091903461020957602036600319011261020957610229610506565b803b6102a4576001600160a01b0380911692831561029657503384528360205281842054169083208273ffffffffffffffffffffffffffffffffffffffff19825416179055337fc8894f26f396ce8c004245c8b7cd1b92103a6e4302fcbab883987149ac01b7ec8480a480f35b82516307e179e960e31b8152fd5b826001600160a01b0360249351926377817ac360e01b84521690820152fd5b5090346100d057816003193601126100d0578051610129916102e48261044a565b601f82527f4543445341204f776e657273686970205265676973747279204d6f64756c65006020830152519182918261053f565b50809134610385578160031936011261038557338252816020526001600160a01b03818320541690822073ffffffffffffffffffffffffffffffffffffffff198154169055337fc8894f26f396ce8c004245c8b7cd1b92103a6e4302fcbab883987149ac01b7ec8380a480f35b50fd5b509134610209576020366003190112610209576103a3610506565b338452836020526001600160a01b03908184862054166103f45716908115610296575081602093338152808552209073ffffffffffffffffffffffffffffffffffffffff1982541617905551308152f35b8351632c4dfb7d60e21b81523381850152602490fd5b50346100cd57816003193601126100cd576024359067ffffffffffffffff82116100cd57506020926104426101db92369083016104ba565b33913561056b565b6040810190811067ffffffffffffffff82111761046657604052565b634e487b7160e01b600052604160045260246000fd5b90601f8019910116810190811067ffffffffffffffff82111761046657604052565b67ffffffffffffffff811161046657601f01601f191660200190565b81601f82011215610501578035906104d18261049e565b926104df604051948561047c565b8284526020838301011161050157816000926020809301838601378301015290565b600080fd5b600435906001600160a01b038216820361050157565b60005b83811061052f5750506000910152565b818101518382015260200161051f565b6040916020825261055f815180928160208601526020868601910161051c565b601f01601f1916010190565b9061057692916105a9565b61059e577fffffffff0000000000000000000000000000000000000000000000000000000090565b630b135d3f60e11b90565b916001600160a01b0380911691600093838552846020528260408620541693841561065757506041825110610645577f19457468657265756d205369676e6564204d6573736167653a0a333200000000855280601c528261061861061084603c8920610789565b91909161066f565b16841461063b5761062c9161061091610789565b16146106355790565b50600190565b5050505050600190565b604051632bb1a9c560e11b8152600490fd5b60249060405190633d3fff5360e21b82526004820152fd5b600581101561077357806106805750565b600181036106cd5760405162461bcd60e51b815260206004820152601860248201527f45434453413a20696e76616c6964207369676e617475726500000000000000006044820152606490fd5b6002810361071a5760405162461bcd60e51b815260206004820152601f60248201527f45434453413a20696e76616c6964207369676e6174757265206c656e677468006044820152606490fd5b60031461072357565b60405162461bcd60e51b815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202773272076616c604482015261756560f01b6064820152608490fd5b634e487b7160e01b600052602160045260246000fd5b9060418151146000146107b7576107b3916020820151906060604084015193015160001a906107c1565b9091565b5050600090600290565b9291907f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0831161083e5791608094939160ff602094604051948552168484015260408301526060820152600093849182805260015afa156108315781516001600160a01b03811615610635579190565b50604051903d90823e3d90fd5b50505050600090600390565b519065ffffffffffff8216820361050157565b919091610140810135601e19823603018112156105015781019182359267ffffffffffffffff9081851161050157602092838201958036038713610501578201604096878483031261050157359084821161050157879186806108c49301918601016104ba565b920135946001600160a01b0395868116036105015735966041835114610b43578251830160a0848783019203126105015761090086850161084a565b9061090c89860161084a565b9060608601519160808701518881116105015787019782603f8a011215610501578989015197818911610466578a998d9960059a818c1b9161095482519e8f9085019061047c565b8d528d8d019183010191868311610501578f8e9101915b838310610b33575050505060a081015190828211610501570183603f8201121561050157808b01518d9461099e8261049e565b956109ab8151978861047c565b8287528284010111610501576109c6918e8d8701910161051c565b8b51908a8201927fffffffffffff000000000000000000000000000000000000000000000000000090818860d01b16855260d01b1696876026840152602c830152602c8252606082019082821090821117610466578c52519020986000995b88518b1015610a84578a881b89018a0151908c600083831015610a7757505060005289528a6000205b996000198114610a615760010199610a25565b634e487b7160e01b600052601160045260246000fd5b91909282528b5220610a4e565b91965094999a93985081965096919603610af05750610aa8949596975016916105a9565b15610ae95779ffffffffffff00000000000000000000000000000000000000009065ffffffffffff90818116610ae257505b60a01b161790565b9050610ada565b5050600190565b60649089519062461bcd60e51b82526004820152600e60248201527f496e76616c696420557365724f700000000000000000000000000000000000006044820152fd5b82518152918101918e910161096b565b94925095909250610b56945016916105a9565b15610b6057600090565b60019056fea26469706673582212208948baa5dd0374e3272f82e9cff2622acd3d27d89338d835bc985b6228e2bf1b64736f6c63430008110033
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.