Sepolia Testnet

Contract

0x9010f89A817294B6E318ca21CA64a6726ea42418

Overview

ETH Balance

0 ETH

Multichain Info

N/A
Transaction Hash
Method
Block
From
To

There are no matching entries

Please try again later

Latest 1 internal transaction

Advanced mode:
Parent Transaction Hash Block From To
69737152024-10-30 2:09:2434 days ago1730254164  Contract Creation0 ETH
Loading...
Loading

Minimal Proxy Contract for 0xef5e3833c1fe43e4a8eca9411d204b839508e9b8

Contract Name:
VetoSlasher

Compiler Version
v0.8.25+commit.b61c2a91

Optimization Enabled:
Yes with 200 runs

Other Settings:
paris EvmVersion

Contract Source Code (Solidity Standard Json-Input format)

File 1 of 23 : VetoSlasher.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.25;

import {BaseSlasher} from "./BaseSlasher.sol";

import {IBaseDelegator} from "../../interfaces/delegator/IBaseDelegator.sol";
import {IRegistry} from "../../interfaces/common/IRegistry.sol";
import {IVault} from "../../interfaces/vault/IVault.sol";
import {IVetoSlasher} from "../../interfaces/slasher/IVetoSlasher.sol";

import {Checkpoints} from "../libraries/Checkpoints.sol";
import {Subnetwork} from "../libraries/Subnetwork.sol";

import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {SafeCast} from "@openzeppelin/contracts/utils/math/SafeCast.sol";
import {Time} from "@openzeppelin/contracts/utils/types/Time.sol";

contract VetoSlasher is BaseSlasher, IVetoSlasher {
    using Math for uint256;
    using SafeCast for uint256;
    using Checkpoints for Checkpoints.Trace208;
    using Subnetwork for address;

    /**
     * @inheritdoc IVetoSlasher
     */
    address public immutable NETWORK_REGISTRY;

    /**
     * @inheritdoc IVetoSlasher
     */
    SlashRequest[] public slashRequests;

    /**
     * @inheritdoc IVetoSlasher
     */
    uint48 public vetoDuration;

    /**
     * @inheritdoc IVetoSlasher
     */
    uint256 public resolverSetEpochsDelay;

    mapping(bytes32 subnetwork => Checkpoints.Trace208 value) internal _resolver;

    constructor(
        address vaultFactory,
        address networkMiddlewareService,
        address networkRegistry,
        address slasherFactory,
        uint64 entityType
    ) BaseSlasher(vaultFactory, networkMiddlewareService, slasherFactory, entityType) {
        NETWORK_REGISTRY = networkRegistry;
    }

    /**
     * @inheritdoc IVetoSlasher
     */
    function slashRequestsLength() external view returns (uint256) {
        return slashRequests.length;
    }

    /**
     * @inheritdoc IVetoSlasher
     */
    function resolverAt(bytes32 subnetwork, uint48 timestamp, bytes memory hint) public view returns (address) {
        return address(uint160(_resolver[subnetwork].upperLookupRecent(timestamp, hint)));
    }

    /**
     * @inheritdoc IVetoSlasher
     */
    function resolver(bytes32 subnetwork, bytes memory hint) public view returns (address) {
        return resolverAt(subnetwork, Time.timestamp(), hint);
    }

    /**
     * @inheritdoc IVetoSlasher
     */
    function requestSlash(
        bytes32 subnetwork,
        address operator,
        uint256 amount,
        uint48 captureTimestamp,
        bytes calldata hints
    ) external nonReentrant onlyNetworkMiddleware(subnetwork) returns (uint256 slashIndex) {
        RequestSlashHints memory requestSlashHints;
        if (hints.length > 0) {
            requestSlashHints = abi.decode(hints, (RequestSlashHints));
        }

        if (
            captureTimestamp < Time.timestamp() + vetoDuration - IVault(vault).epochDuration()
                || captureTimestamp >= Time.timestamp()
        ) {
            revert InvalidCaptureTimestamp();
        }

        amount = Math.min(
            amount, slashableStake(subnetwork, operator, captureTimestamp, requestSlashHints.slashableStakeHints)
        );
        if (amount == 0) {
            revert InsufficientSlash();
        }

        uint48 vetoDeadline = Time.timestamp() + vetoDuration;

        slashIndex = slashRequests.length;
        slashRequests.push(
            SlashRequest({
                subnetwork: subnetwork,
                operator: operator,
                amount: amount,
                captureTimestamp: captureTimestamp,
                vetoDeadline: vetoDeadline,
                completed: false
            })
        );

        emit RequestSlash(slashIndex, subnetwork, operator, amount, captureTimestamp, vetoDeadline);
    }

    /**
     * @inheritdoc IVetoSlasher
     */
    function executeSlash(
        uint256 slashIndex,
        bytes calldata hints
    ) external nonReentrant returns (uint256 slashedAmount) {
        ExecuteSlashHints memory executeSlashHints;
        if (hints.length > 0) {
            executeSlashHints = abi.decode(hints, (ExecuteSlashHints));
        }

        if (slashIndex >= slashRequests.length) {
            revert SlashRequestNotExist();
        }

        SlashRequest storage request = slashRequests[slashIndex];

        _checkNetworkMiddleware(request.subnetwork);

        if (
            resolverAt(request.subnetwork, request.captureTimestamp, executeSlashHints.captureResolverHint)
                != address(0)
                && resolverAt(request.subnetwork, Time.timestamp() - 1, executeSlashHints.currentResolverHint) != address(0)
                && request.vetoDeadline > Time.timestamp()
        ) {
            revert VetoPeriodNotEnded();
        }

        if (Time.timestamp() - request.captureTimestamp > IVault(vault).epochDuration()) {
            revert SlashPeriodEnded();
        }

        (uint256 slashableStake_, uint256 stakeAt) = _slashableStake(
            request.subnetwork, request.operator, request.captureTimestamp, executeSlashHints.slashableStakeHints
        );
        slashedAmount = Math.min(request.amount, slashableStake_);
        if (slashedAmount == 0) {
            revert InsufficientSlash();
        }

        if (request.completed) {
            revert SlashRequestCompleted();
        }

        request.completed = true;

        _updateLatestSlashedCaptureTimestamp(request.subnetwork, request.operator, request.captureTimestamp);

        _updateCumulativeSlash(request.subnetwork, request.operator, slashedAmount);

        _delegatorOnSlash(
            request.subnetwork,
            request.operator,
            slashedAmount,
            request.captureTimestamp,
            abi.encode(
                IVetoSlasher.DelegatorData({slashableStake: slashableStake_, stakeAt: stakeAt, slashIndex: slashIndex})
            )
        );

        _vaultOnSlash(slashedAmount, request.captureTimestamp);

        _burnerOnSlash(request.subnetwork, request.operator, slashedAmount, request.captureTimestamp);

        emit ExecuteSlash(slashIndex, slashedAmount);
    }

    /**
     * @inheritdoc IVetoSlasher
     */
    function vetoSlash(uint256 slashIndex, bytes calldata hints) external nonReentrant {
        VetoSlashHints memory vetoSlashHints;
        if (hints.length > 0) {
            vetoSlashHints = abi.decode(hints, (VetoSlashHints));
        }

        if (slashIndex >= slashRequests.length) {
            revert SlashRequestNotExist();
        }

        SlashRequest storage request = slashRequests[slashIndex];

        address captureResolver =
            resolverAt(request.subnetwork, request.captureTimestamp, vetoSlashHints.captureResolverHint);
        if (
            captureResolver == address(0)
                || resolverAt(request.subnetwork, Time.timestamp() - 1, vetoSlashHints.currentResolverHint) == address(0)
        ) {
            revert NoResolver();
        }

        if (msg.sender != captureResolver) {
            revert NotResolver();
        }

        if (request.vetoDeadline <= Time.timestamp()) {
            revert VetoPeriodEnded();
        }

        if (request.completed) {
            revert SlashRequestCompleted();
        }

        request.completed = true;

        emit VetoSlash(slashIndex, msg.sender);
    }

    function setResolver(uint96 identifier, address resolver_, bytes calldata hints) external nonReentrant {
        SetResolverHints memory setResolverHints;
        if (hints.length > 0) {
            setResolverHints = abi.decode(hints, (SetResolverHints));
        }

        if (!IRegistry(NETWORK_REGISTRY).isEntity(msg.sender)) {
            revert NotNetwork();
        }

        address vault_ = vault;
        bytes32 subnetwork = (msg.sender).subnetwork(identifier);
        (bool exists, uint48 latestTimestamp,) = _resolver[subnetwork].latestCheckpoint();
        if (exists) {
            if (latestTimestamp > Time.timestamp()) {
                _resolver[subnetwork].pop();
            } else if (resolver_ == address(uint160(_resolver[subnetwork].latest()))) {
                revert AlreadySet();
            }

            if (resolver_ != address(uint160(_resolver[subnetwork].latest()))) {
                _resolver[subnetwork].push(
                    (IVault(vault_).currentEpochStart() + resolverSetEpochsDelay * IVault(vault_).epochDuration())
                        .toUint48(),
                    uint160(resolver_)
                );
            }
        } else {
            if (resolver_ == address(0)) {
                revert AlreadySet();
            }

            _resolver[subnetwork].push(Time.timestamp(), uint160(resolver_));
        }

        emit SetResolver(subnetwork, resolver_);
    }

    function __initialize(address vault_, bytes memory data) internal override returns (BaseParams memory) {
        (InitParams memory params) = abi.decode(data, (InitParams));

        uint48 epochDuration = IVault(vault_).epochDuration();
        if (params.vetoDuration >= epochDuration) {
            revert InvalidVetoDuration();
        }

        if (params.resolverSetEpochsDelay < 3) {
            revert InvalidResolverSetEpochsDelay();
        }

        vetoDuration = params.vetoDuration;

        resolverSetEpochsDelay = params.resolverSetEpochsDelay;

        return params.baseParams;
    }
}

File 2 of 23 : BaseSlasher.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.25;

import {Entity} from "../common/Entity.sol";
import {StaticDelegateCallable} from "../common/StaticDelegateCallable.sol";

import {IBaseDelegator} from "../../interfaces/delegator/IBaseDelegator.sol";
import {IBaseSlasher} from "../../interfaces/slasher/IBaseSlasher.sol";
import {IBurner} from "../../interfaces/slasher/IBurner.sol";
import {INetworkMiddlewareService} from "../../interfaces/service/INetworkMiddlewareService.sol";
import {IRegistry} from "../../interfaces/common/IRegistry.sol";
import {IVault} from "../../interfaces/vault/IVault.sol";

import {Checkpoints} from "../libraries/Checkpoints.sol";
import {Subnetwork} from "../libraries/Subnetwork.sol";

import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {ReentrancyGuardUpgradeable} from "@openzeppelin/contracts-upgradeable/utils/ReentrancyGuardUpgradeable.sol";
import {Time} from "@openzeppelin/contracts/utils/types/Time.sol";

abstract contract BaseSlasher is Entity, StaticDelegateCallable, ReentrancyGuardUpgradeable, IBaseSlasher {
    using Checkpoints for Checkpoints.Trace256;
    using Subnetwork for bytes32;

    /**
     * @inheritdoc IBaseSlasher
     */
    uint256 public constant BURNER_GAS_LIMIT = 150_000;

    /**
     * @inheritdoc IBaseSlasher
     */
    uint256 public constant BURNER_RESERVE = 20_000;

    /**
     * @inheritdoc IBaseSlasher
     */
    address public immutable VAULT_FACTORY;

    /**
     * @inheritdoc IBaseSlasher
     */
    address public immutable NETWORK_MIDDLEWARE_SERVICE;

    /**
     * @inheritdoc IBaseSlasher
     */
    address public vault;

    /**
     * @inheritdoc IBaseSlasher
     */
    bool public isBurnerHook;

    /**
     * @inheritdoc IBaseSlasher
     */
    mapping(bytes32 subnetwork => mapping(address operator => uint48 value)) public latestSlashedCaptureTimestamp;

    mapping(bytes32 subnetwork => mapping(address operator => Checkpoints.Trace256 amount)) internal _cumulativeSlash;

    modifier onlyNetworkMiddleware(
        bytes32 subnetwork
    ) {
        _checkNetworkMiddleware(subnetwork);

        _;
    }

    constructor(
        address vaultFactory,
        address networkMiddlewareService,
        address slasherFactory,
        uint64 entityType
    ) Entity(slasherFactory, entityType) {
        VAULT_FACTORY = vaultFactory;
        NETWORK_MIDDLEWARE_SERVICE = networkMiddlewareService;
    }

    /**
     * @inheritdoc IBaseSlasher
     */
    function cumulativeSlashAt(
        bytes32 subnetwork,
        address operator,
        uint48 timestamp,
        bytes memory hint
    ) public view returns (uint256) {
        return _cumulativeSlash[subnetwork][operator].upperLookupRecent(timestamp, hint);
    }

    /**
     * @inheritdoc IBaseSlasher
     */
    function cumulativeSlash(bytes32 subnetwork, address operator) public view returns (uint256) {
        return _cumulativeSlash[subnetwork][operator].latest();
    }

    /**
     * @inheritdoc IBaseSlasher
     */
    function slashableStake(
        bytes32 subnetwork,
        address operator,
        uint48 captureTimestamp,
        bytes memory hints
    ) public view returns (uint256 amount) {
        (amount,) = _slashableStake(subnetwork, operator, captureTimestamp, hints);
    }

    function _slashableStake(
        bytes32 subnetwork,
        address operator,
        uint48 captureTimestamp,
        bytes memory hints
    ) internal view returns (uint256 slashableStake_, uint256 stakeAmount) {
        SlashableStakeHints memory slashableStakeHints;
        if (hints.length > 0) {
            slashableStakeHints = abi.decode(hints, (SlashableStakeHints));
        }

        if (
            captureTimestamp < Time.timestamp() - IVault(vault).epochDuration() || captureTimestamp >= Time.timestamp()
                || captureTimestamp < latestSlashedCaptureTimestamp[subnetwork][operator]
        ) {
            return (0, 0);
        }

        stakeAmount = IBaseDelegator(IVault(vault).delegator()).stakeAt(
            subnetwork, operator, captureTimestamp, slashableStakeHints.stakeHints
        );
        slashableStake_ = stakeAmount
            - Math.min(
                cumulativeSlash(subnetwork, operator)
                    - cumulativeSlashAt(subnetwork, operator, captureTimestamp, slashableStakeHints.cumulativeSlashFromHint),
                stakeAmount
            );
    }

    function _checkNetworkMiddleware(
        bytes32 subnetwork
    ) internal view {
        if (INetworkMiddlewareService(NETWORK_MIDDLEWARE_SERVICE).middleware(subnetwork.network()) != msg.sender) {
            revert NotNetworkMiddleware();
        }
    }

    function _updateLatestSlashedCaptureTimestamp(
        bytes32 subnetwork,
        address operator,
        uint48 captureTimestamp
    ) internal {
        if (latestSlashedCaptureTimestamp[subnetwork][operator] < captureTimestamp) {
            latestSlashedCaptureTimestamp[subnetwork][operator] = captureTimestamp;
        }
    }

    function _updateCumulativeSlash(bytes32 subnetwork, address operator, uint256 amount) internal {
        _cumulativeSlash[subnetwork][operator].push(Time.timestamp(), cumulativeSlash(subnetwork, operator) + amount);
    }

    function _delegatorOnSlash(
        bytes32 subnetwork,
        address operator,
        uint256 amount,
        uint48 captureTimestamp,
        bytes memory data
    ) internal {
        IBaseDelegator(IVault(vault).delegator()).onSlash(
            subnetwork,
            operator,
            amount,
            captureTimestamp,
            abi.encode(GeneralDelegatorData({slasherType: TYPE, data: data}))
        );
    }

    function _vaultOnSlash(uint256 amount, uint48 captureTimestamp) internal {
        IVault(vault).onSlash(amount, captureTimestamp);
    }

    function _burnerOnSlash(bytes32 subnetwork, address operator, uint256 amount, uint48 captureTimestamp) internal {
        if (isBurnerHook) {
            address burner = IVault(vault).burner();
            bytes memory calldata_ = abi.encodeCall(IBurner.onSlash, (subnetwork, operator, amount, captureTimestamp));

            if (gasleft() < BURNER_RESERVE + BURNER_GAS_LIMIT * 64 / 63) {
                revert InsufficientBurnerGas();
            }

            assembly ("memory-safe") {
                pop(call(BURNER_GAS_LIMIT, burner, 0, add(calldata_, 0x20), mload(calldata_), 0, 0))
            }
        }
    }

    function _initialize(
        bytes calldata data
    ) internal override {
        (address vault_, bytes memory data_) = abi.decode(data, (address, bytes));

        if (!IRegistry(VAULT_FACTORY).isEntity(vault_)) {
            revert NotVault();
        }

        __ReentrancyGuard_init();

        vault = vault_;

        BaseParams memory baseParams = __initialize(vault_, data_);

        if (IVault(vault_).burner() == address(0) && baseParams.isBurnerHook) {
            revert NoBurner();
        }

        isBurnerHook = baseParams.isBurnerHook;
    }

    function __initialize(address vault_, bytes memory data) internal virtual returns (BaseParams memory) {}
}

File 3 of 23 : IBaseDelegator.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import {IEntity} from "../common/IEntity.sol";

interface IBaseDelegator is IEntity {
    error AlreadySet();
    error InsufficientHookGas();
    error NotNetwork();
    error NotSlasher();
    error NotVault();

    /**
     * @notice Base parameters needed for delegators' deployment.
     * @param defaultAdminRoleHolder address of the initial DEFAULT_ADMIN_ROLE holder
     * @param hook address of the hook contract
     * @param hookSetRoleHolder address of the initial HOOK_SET_ROLE holder
     */
    struct BaseParams {
        address defaultAdminRoleHolder;
        address hook;
        address hookSetRoleHolder;
    }

    /**
     * @notice Base hints for a stake.
     * @param operatorVaultOptInHint hint for the operator-vault opt-in
     * @param operatorNetworkOptInHint hint for the operator-network opt-in
     */
    struct StakeBaseHints {
        bytes operatorVaultOptInHint;
        bytes operatorNetworkOptInHint;
    }

    /**
     * @notice Emitted when a subnetwork's maximum limit is set.
     * @param subnetwork full identifier of the subnetwork (address of the network concatenated with the uint96 identifier)
     * @param amount new maximum subnetwork's limit (how much stake the subnetwork is ready to get)
     */
    event SetMaxNetworkLimit(bytes32 indexed subnetwork, uint256 amount);

    /**
     * @notice Emitted when a slash happens.
     * @param subnetwork full identifier of the subnetwork (address of the network concatenated with the uint96 identifier)
     * @param operator address of the operator
     * @param amount amount of the collateral to be slashed
     * @param captureTimestamp time point when the stake was captured
     */
    event OnSlash(bytes32 indexed subnetwork, address indexed operator, uint256 amount, uint48 captureTimestamp);

    /**
     * @notice Emitted when a hook is set.
     * @param hook address of the hook
     */
    event SetHook(address indexed hook);

    /**
     * @notice Get a version of the delegator (different versions mean different interfaces).
     * @return version of the delegator
     * @dev Must return 1 for this one.
     */
    function VERSION() external view returns (uint64);

    /**
     * @notice Get the network registry's address.
     * @return address of the network registry
     */
    function NETWORK_REGISTRY() external view returns (address);

    /**
     * @notice Get the vault factory's address.
     * @return address of the vault factory
     */
    function VAULT_FACTORY() external view returns (address);

    /**
     * @notice Get the operator-vault opt-in service's address.
     * @return address of the operator-vault opt-in service
     */
    function OPERATOR_VAULT_OPT_IN_SERVICE() external view returns (address);

    /**
     * @notice Get the operator-network opt-in service's address.
     * @return address of the operator-network opt-in service
     */
    function OPERATOR_NETWORK_OPT_IN_SERVICE() external view returns (address);

    /**
     * @notice Get a gas limit for the hook.
     * @return value of the hook gas limit
     */
    function HOOK_GAS_LIMIT() external view returns (uint256);

    /**
     * @notice Get a reserve gas between the gas limit check and the hook's execution.
     * @return value of the reserve gas
     */
    function HOOK_RESERVE() external view returns (uint256);

    /**
     * @notice Get a hook setter's role.
     * @return identifier of the hook setter role
     */
    function HOOK_SET_ROLE() external view returns (bytes32);

    /**
     * @notice Get the vault's address.
     * @return address of the vault
     */
    function vault() external view returns (address);

    /**
     * @notice Get the hook's address.
     * @return address of the hook
     * @dev The hook can have arbitrary logic under certain functions, however, it doesn't affect the stake guarantees.
     */
    function hook() external view returns (address);

    /**
     * @notice Get a particular subnetwork's maximum limit
     *         (meaning the subnetwork is not ready to get more as a stake).
     * @param subnetwork full identifier of the subnetwork (address of the network concatenated with the uint96 identifier)
     * @return maximum limit of the subnetwork
     */
    function maxNetworkLimit(
        bytes32 subnetwork
    ) external view returns (uint256);

    /**
     * @notice Get a stake that a given subnetwork could be able to slash for a certain operator at a given timestamp
     *         until the end of the consequent epoch using hints (if no cross-slashing and no slashings by the subnetwork).
     * @param subnetwork full identifier of the subnetwork (address of the network concatenated with the uint96 identifier)
     * @param operator address of the operator
     * @param timestamp time point to capture the stake at
     * @param hints hints for the checkpoints' indexes
     * @return slashable stake at the given timestamp until the end of the consequent epoch
     * @dev Warning: it is not safe to use timestamp >= current one for the stake capturing, as it can change later.
     */
    function stakeAt(
        bytes32 subnetwork,
        address operator,
        uint48 timestamp,
        bytes memory hints
    ) external view returns (uint256);

    /**
     * @notice Get a stake that a given subnetwork will be able to slash
     *         for a certain operator until the end of the next epoch (if no cross-slashing and no slashings by the subnetwork).
     * @param subnetwork full identifier of the subnetwork (address of the network concatenated with the uint96 identifier)
     * @param operator address of the operator
     * @return slashable stake until the end of the next epoch
     * @dev Warning: this function is not safe to use for stake capturing, as it can change by the end of the block.
     */
    function stake(bytes32 subnetwork, address operator) external view returns (uint256);

    /**
     * @notice Set a maximum limit for a subnetwork (how much stake the subnetwork is ready to get).
     * identifier identifier of the subnetwork
     * @param amount new maximum subnetwork's limit
     * @dev Only a network can call this function.
     */
    function setMaxNetworkLimit(uint96 identifier, uint256 amount) external;

    /**
     * @notice Set a new hook.
     * @param hook address of the hook
     * @dev Only a HOOK_SET_ROLE holder can call this function.
     *      The hook can have arbitrary logic under certain functions, however, it doesn't affect the stake guarantees.
     */
    function setHook(
        address hook
    ) external;

    /**
     * @notice Called when a slash happens.
     * @param subnetwork full identifier of the subnetwork (address of the network concatenated with the uint96 identifier)
     * @param operator address of the operator
     * @param amount amount of the collateral slashed
     * @param captureTimestamp time point when the stake was captured
     * @param data some additional data
     * @dev Only the vault's slasher can call this function.
     */
    function onSlash(
        bytes32 subnetwork,
        address operator,
        uint256 amount,
        uint48 captureTimestamp,
        bytes calldata data
    ) external;
}

File 4 of 23 : IRegistry.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

interface IRegistry {
    error EntityNotExist();

    /**
     * @notice Emitted when an entity is added.
     * @param entity address of the added entity
     */
    event AddEntity(address indexed entity);

    /**
     * @notice Get if a given address is an entity.
     * @param account address to check
     * @return if the given address is an entity
     */
    function isEntity(
        address account
    ) external view returns (bool);

    /**
     * @notice Get a total number of entities.
     * @return total number of entities added
     */
    function totalEntities() external view returns (uint256);

    /**
     * @notice Get an entity given its index.
     * @param index index of the entity to get
     * @return address of the entity
     */
    function entity(
        uint256 index
    ) external view returns (address);
}

File 5 of 23 : IVault.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import {IMigratableEntity} from "../common/IMigratableEntity.sol";
import {IVaultStorage} from "./IVaultStorage.sol";

interface IVault is IMigratableEntity, IVaultStorage {
    error AlreadyClaimed();
    error AlreadySet();
    error DelegatorAlreadyInitialized();
    error DepositLimitReached();
    error InsufficientClaim();
    error InsufficientDeposit();
    error InsufficientRedemption();
    error InsufficientWithdrawal();
    error InvalidAccount();
    error InvalidCaptureEpoch();
    error InvalidClaimer();
    error InvalidCollateral();
    error InvalidDelegator();
    error InvalidEpoch();
    error InvalidEpochDuration();
    error InvalidLengthEpochs();
    error InvalidOnBehalfOf();
    error InvalidRecipient();
    error InvalidSlasher();
    error MissingRoles();
    error NotDelegator();
    error NotSlasher();
    error NotWhitelistedDepositor();
    error SlasherAlreadyInitialized();
    error TooMuchRedeem();
    error TooMuchWithdraw();

    /**
     * @notice Initial parameters needed for a vault deployment.
     * @param collateral vault's underlying collateral
     * @param burner vault's burner to issue debt to (e.g., 0xdEaD or some unwrapper contract)
     * @param epochDuration duration of the vault epoch (it determines sync points for withdrawals)
     * @param depositWhitelist if enabling deposit whitelist
     * @param isDepositLimit if enabling deposit limit
     * @param depositLimit deposit limit (maximum amount of the collateral that can be in the vault simultaneously)
     * @param defaultAdminRoleHolder address of the initial DEFAULT_ADMIN_ROLE holder
     * @param depositWhitelistSetRoleHolder address of the initial DEPOSIT_WHITELIST_SET_ROLE holder
     * @param depositorWhitelistRoleHolder address of the initial DEPOSITOR_WHITELIST_ROLE holder
     * @param isDepositLimitSetRoleHolder address of the initial IS_DEPOSIT_LIMIT_SET_ROLE holder
     * @param depositLimitSetRoleHolder address of the initial DEPOSIT_LIMIT_SET_ROLE holder
     */
    struct InitParams {
        address collateral;
        address burner;
        uint48 epochDuration;
        bool depositWhitelist;
        bool isDepositLimit;
        uint256 depositLimit;
        address defaultAdminRoleHolder;
        address depositWhitelistSetRoleHolder;
        address depositorWhitelistRoleHolder;
        address isDepositLimitSetRoleHolder;
        address depositLimitSetRoleHolder;
    }

    /**
     * @notice Hints for an active balance.
     * @param activeSharesOfHint hint for the active shares of checkpoint
     * @param activeStakeHint hint for the active stake checkpoint
     * @param activeSharesHint hint for the active shares checkpoint
     */
    struct ActiveBalanceOfHints {
        bytes activeSharesOfHint;
        bytes activeStakeHint;
        bytes activeSharesHint;
    }

    /**
     * @notice Emitted when a deposit is made.
     * @param depositor account that made the deposit
     * @param onBehalfOf account the deposit was made on behalf of
     * @param amount amount of the collateral deposited
     * @param shares amount of the active shares minted
     */
    event Deposit(address indexed depositor, address indexed onBehalfOf, uint256 amount, uint256 shares);

    /**
     * @notice Emitted when a withdrawal is made.
     * @param withdrawer account that made the withdrawal
     * @param claimer account that needs to claim the withdrawal
     * @param amount amount of the collateral withdrawn
     * @param burnedShares amount of the active shares burned
     * @param mintedShares amount of the epoch withdrawal shares minted
     */
    event Withdraw(
        address indexed withdrawer, address indexed claimer, uint256 amount, uint256 burnedShares, uint256 mintedShares
    );

    /**
     * @notice Emitted when a claim is made.
     * @param claimer account that claimed
     * @param recipient account that received the collateral
     * @param epoch epoch the collateral was claimed for
     * @param amount amount of the collateral claimed
     */
    event Claim(address indexed claimer, address indexed recipient, uint256 epoch, uint256 amount);

    /**
     * @notice Emitted when a batch claim is made.
     * @param claimer account that claimed
     * @param recipient account that received the collateral
     * @param epochs epochs the collateral was claimed for
     * @param amount amount of the collateral claimed
     */
    event ClaimBatch(address indexed claimer, address indexed recipient, uint256[] epochs, uint256 amount);

    /**
     * @notice Emitted when a slash happens.
     * @param amount amount of the collateral to slash
     * @param captureTimestamp time point when the stake was captured
     * @param slashedAmount real amount of the collateral slashed
     */
    event OnSlash(uint256 amount, uint48 captureTimestamp, uint256 slashedAmount);

    /**
     * @notice Emitted when a deposit whitelist status is enabled/disabled.
     * @param status if enabled deposit whitelist
     */
    event SetDepositWhitelist(bool status);

    /**
     * @notice Emitted when a depositor whitelist status is set.
     * @param account account for which the whitelist status is set
     * @param status if whitelisted the account
     */
    event SetDepositorWhitelistStatus(address indexed account, bool status);

    /**
     * @notice Emitted when a deposit limit status is enabled/disabled.
     * @param status if enabled deposit limit
     */
    event SetIsDepositLimit(bool status);

    /**
     * @notice Emitted when a deposit limit is set.
     * @param limit deposit limit (maximum amount of the collateral that can be in the vault simultaneously)
     */
    event SetDepositLimit(uint256 limit);

    /**
     * @notice Emitted when a delegator is set.
     * @param delegator vault's delegator to delegate the stake to networks and operators
     * @dev Can be set only once.
     */
    event SetDelegator(address indexed delegator);

    /**
     * @notice Emitted when a slasher is set.
     * @param slasher vault's slasher to provide a slashing mechanism to networks
     * @dev Can be set only once.
     */
    event SetSlasher(address indexed slasher);

    /**
     * @notice Check if the vault is fully initialized (a delegator and a slasher are set).
     * @return if the vault is fully initialized
     */
    function isInitialized() external view returns (bool);

    /**
     * @notice Get a total amount of the collateral that can be slashed.
     * @return total amount of the slashable collateral
     */
    function totalStake() external view returns (uint256);

    /**
     * @notice Get an active balance for a particular account at a given timestamp using hints.
     * @param account account to get the active balance for
     * @param timestamp time point to get the active balance for the account at
     * @param hints hints for checkpoints' indexes
     * @return active balance for the account at the timestamp
     */
    function activeBalanceOfAt(
        address account,
        uint48 timestamp,
        bytes calldata hints
    ) external view returns (uint256);

    /**
     * @notice Get an active balance for a particular account.
     * @param account account to get the active balance for
     * @return active balance for the account
     */
    function activeBalanceOf(
        address account
    ) external view returns (uint256);

    /**
     * @notice Get withdrawals for a particular account at a given epoch (zero if claimed).
     * @param epoch epoch to get the withdrawals for the account at
     * @param account account to get the withdrawals for
     * @return withdrawals for the account at the epoch
     */
    function withdrawalsOf(uint256 epoch, address account) external view returns (uint256);

    /**
     * @notice Get a total amount of the collateral that can be slashed for a given account.
     * @param account account to get the slashable collateral for
     * @return total amount of the account's slashable collateral
     */
    function slashableBalanceOf(
        address account
    ) external view returns (uint256);

    /**
     * @notice Deposit collateral into the vault.
     * @param onBehalfOf account the deposit is made on behalf of
     * @param amount amount of the collateral to deposit
     * @return depositedAmount real amount of the collateral deposited
     * @return mintedShares amount of the active shares minted
     */
    function deposit(
        address onBehalfOf,
        uint256 amount
    ) external returns (uint256 depositedAmount, uint256 mintedShares);

    /**
     * @notice Withdraw collateral from the vault (it will be claimable after the next epoch).
     * @param claimer account that needs to claim the withdrawal
     * @param amount amount of the collateral to withdraw
     * @return burnedShares amount of the active shares burned
     * @return mintedShares amount of the epoch withdrawal shares minted
     */
    function withdraw(address claimer, uint256 amount) external returns (uint256 burnedShares, uint256 mintedShares);

    /**
     * @notice Redeem collateral from the vault (it will be claimable after the next epoch).
     * @param claimer account that needs to claim the withdrawal
     * @param shares amount of the active shares to redeem
     * @return withdrawnAssets amount of the collateral withdrawn
     * @return mintedShares amount of the epoch withdrawal shares minted
     */
    function redeem(address claimer, uint256 shares) external returns (uint256 withdrawnAssets, uint256 mintedShares);

    /**
     * @notice Claim collateral from the vault.
     * @param recipient account that receives the collateral
     * @param epoch epoch to claim the collateral for
     * @return amount amount of the collateral claimed
     */
    function claim(address recipient, uint256 epoch) external returns (uint256 amount);

    /**
     * @notice Claim collateral from the vault for multiple epochs.
     * @param recipient account that receives the collateral
     * @param epochs epochs to claim the collateral for
     * @return amount amount of the collateral claimed
     */
    function claimBatch(address recipient, uint256[] calldata epochs) external returns (uint256 amount);

    /**
     * @notice Slash callback for burning collateral.
     * @param amount amount to slash
     * @param captureTimestamp time point when the stake was captured
     * @return slashedAmount real amount of the collateral slashed
     * @dev Only the slasher can call this function.
     */
    function onSlash(uint256 amount, uint48 captureTimestamp) external returns (uint256 slashedAmount);

    /**
     * @notice Enable/disable deposit whitelist.
     * @param status if enabling deposit whitelist
     * @dev Only a DEPOSIT_WHITELIST_SET_ROLE holder can call this function.
     */
    function setDepositWhitelist(
        bool status
    ) external;

    /**
     * @notice Set a depositor whitelist status.
     * @param account account for which the whitelist status is set
     * @param status if whitelisting the account
     * @dev Only a DEPOSITOR_WHITELIST_ROLE holder can call this function.
     */
    function setDepositorWhitelistStatus(address account, bool status) external;

    /**
     * @notice Enable/disable deposit limit.
     * @param status if enabling deposit limit
     * @dev Only a IS_DEPOSIT_LIMIT_SET_ROLE holder can call this function.
     */
    function setIsDepositLimit(
        bool status
    ) external;

    /**
     * @notice Set a deposit limit.
     * @param limit deposit limit (maximum amount of the collateral that can be in the vault simultaneously)
     * @dev Only a DEPOSIT_LIMIT_SET_ROLE holder can call this function.
     */
    function setDepositLimit(
        uint256 limit
    ) external;

    /**
     * @notice Set a delegator.
     * @param delegator vault's delegator to delegate the stake to networks and operators
     * @dev Can be set only once.
     */
    function setDelegator(
        address delegator
    ) external;

    /**
     * @notice Set a slasher.
     * @param slasher vault's slasher to provide a slashing mechanism to networks
     * @dev Can be set only once.
     */
    function setSlasher(
        address slasher
    ) external;
}

File 6 of 23 : IVetoSlasher.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import {IBaseSlasher} from "./IBaseSlasher.sol";

interface IVetoSlasher is IBaseSlasher {
    error AlreadySet();
    error InsufficientSlash();
    error InvalidCaptureTimestamp();
    error InvalidResolverSetEpochsDelay();
    error InvalidVetoDuration();
    error NoResolver();
    error NotNetwork();
    error NotResolver();
    error SlashPeriodEnded();
    error SlashRequestCompleted();
    error SlashRequestNotExist();
    error VetoPeriodEnded();
    error VetoPeriodNotEnded();

    /**
     * @notice Initial parameters needed for a slasher deployment.
     * @param baseParams base parameters for slashers' deployment
     * @param vetoDuration duration of the veto period for a slash request
     * @param resolverSetEpochsDelay delay in epochs for a network to update a resolver
     */
    struct InitParams {
        IBaseSlasher.BaseParams baseParams;
        uint48 vetoDuration;
        uint256 resolverSetEpochsDelay;
    }

    /**
     * @notice Structure for a slash request.
     * @param subnetwork subnetwork that requested the slash
     * @param operator operator that could be slashed (if the request is not vetoed)
     * @param amount maximum amount of the collateral to be slashed
     * @param captureTimestamp time point when the stake was captured
     * @param vetoDeadline deadline for the resolver to veto the slash (exclusively)
     * @param completed if the slash was vetoed/executed
     */
    struct SlashRequest {
        bytes32 subnetwork;
        address operator;
        uint256 amount;
        uint48 captureTimestamp;
        uint48 vetoDeadline;
        bool completed;
    }

    /**
     * @notice Hints for a slash request.
     * @param slashableStakeHints hints for the slashable stake checkpoints
     */
    struct RequestSlashHints {
        bytes slashableStakeHints;
    }

    /**
     * @notice Hints for a slash execute.
     * @param captureResolverHint hint for the resolver checkpoint at the capture time
     * @param currentResolverHint hint for the resolver checkpoint at the current time
     * @param slashableStakeHints hints for the slashable stake checkpoints
     */
    struct ExecuteSlashHints {
        bytes captureResolverHint;
        bytes currentResolverHint;
        bytes slashableStakeHints;
    }

    /**
     * @notice Hints for a slash veto.
     * @param captureResolverHint hint for the resolver checkpoint at the capture time
     * @param currentResolverHint hint for the resolver checkpoint at the current time
     */
    struct VetoSlashHints {
        bytes captureResolverHint;
        bytes currentResolverHint;
    }

    /**
     * @notice Hints for a resolver set.
     * @param resolverHint hint for the resolver checkpoint
     */
    struct SetResolverHints {
        bytes resolverHint;
    }

    /**
     * @notice Extra data for the delegator.
     * @param slashableStake amount of the slashable stake before the slash (cache)
     * @param stakeAt amount of the stake at the capture time (cache)
     * @param slashIndex index of the slash request
     */
    struct DelegatorData {
        uint256 slashableStake;
        uint256 stakeAt;
        uint256 slashIndex;
    }

    /**
     * @notice Emitted when a slash request is created.
     * @param slashIndex index of the slash request
     * @param subnetwork subnetwork that requested the slash
     * @param operator operator that could be slashed (if the request is not vetoed)
     * @param slashAmount maximum amount of the collateral to be slashed
     * @param captureTimestamp time point when the stake was captured
     * @param vetoDeadline deadline for the resolver to veto the slash (exclusively)
     */
    event RequestSlash(
        uint256 indexed slashIndex,
        bytes32 indexed subnetwork,
        address indexed operator,
        uint256 slashAmount,
        uint48 captureTimestamp,
        uint48 vetoDeadline
    );

    /**
     * @notice Emitted when a slash request is executed.
     * @param slashIndex index of the slash request
     * @param slashedAmount virtual amount of the collateral slashed
     */
    event ExecuteSlash(uint256 indexed slashIndex, uint256 slashedAmount);

    /**
     * @notice Emitted when a slash request is vetoed.
     * @param slashIndex index of the slash request
     * @param resolver address of the resolver that vetoed the slash
     */
    event VetoSlash(uint256 indexed slashIndex, address indexed resolver);

    /**
     * @notice Emitted when a resolver is set.
     * @param subnetwork full identifier of the subnetwork (address of the network concatenated with the uint96 identifier)
     * @param resolver address of the resolver
     */
    event SetResolver(bytes32 indexed subnetwork, address resolver);

    /**
     * @notice Get the network registry's address.
     * @return address of the network registry
     */
    function NETWORK_REGISTRY() external view returns (address);

    /**
     * @notice Get a duration during which resolvers can veto slash requests.
     * @return duration of the veto period
     */
    function vetoDuration() external view returns (uint48);

    /**
     * @notice Get a total number of slash requests.
     * @return total number of slash requests
     */
    function slashRequestsLength() external view returns (uint256);

    /**
     * @notice Get a particular slash request.
     * @param slashIndex index of the slash request
     * @return subnetwork subnetwork that requested the slash
     * @return operator operator that could be slashed (if the request is not vetoed)
     * @return amount maximum amount of the collateral to be slashed
     * @return captureTimestamp time point when the stake was captured
     * @return vetoDeadline deadline for the resolver to veto the slash (exclusively)
     * @return completed if the slash was vetoed/executed
     */
    function slashRequests(
        uint256 slashIndex
    )
        external
        view
        returns (
            bytes32 subnetwork,
            address operator,
            uint256 amount,
            uint48 captureTimestamp,
            uint48 vetoDeadline,
            bool completed
        );

    /**
     * @notice Get a delay for networks in epochs to update a resolver.
     * @return updating resolver delay in epochs
     */
    function resolverSetEpochsDelay() external view returns (uint256);

    /**
     * @notice Get a resolver for a given subnetwork at a particular timestamp using a hint.
     * @param subnetwork full identifier of the subnetwork (address of the network concatenated with the uint96 identifier)
     * @param timestamp timestamp to get the resolver at
     * @param hint hint for the checkpoint index
     * @return address of the resolver
     */
    function resolverAt(bytes32 subnetwork, uint48 timestamp, bytes memory hint) external view returns (address);

    /**
     * @notice Get a resolver for a given subnetwork using a hint.
     * @param subnetwork full identifier of the subnetwork (address of the network concatenated with the uint96 identifier)
     * @param hint hint for the checkpoint index
     * @return address of the resolver
     */
    function resolver(bytes32 subnetwork, bytes memory hint) external view returns (address);

    /**
     * @notice Request a slash using a subnetwork for a particular operator by a given amount using hints.
     * @param subnetwork full identifier of the subnetwork (address of the network concatenated with the uint96 identifier)
     * @param operator address of the operator
     * @param amount maximum amount of the collateral to be slashed
     * @param captureTimestamp time point when the stake was captured
     * @param hints hints for checkpoints' indexes
     * @return slashIndex index of the slash request
     * @dev Only a network middleware can call this function.
     */
    function requestSlash(
        bytes32 subnetwork,
        address operator,
        uint256 amount,
        uint48 captureTimestamp,
        bytes calldata hints
    ) external returns (uint256 slashIndex);

    /**
     * @notice Execute a slash with a given slash index using hints.
     * @param slashIndex index of the slash request
     * @param hints hints for checkpoints' indexes
     * @return slashedAmount virtual amount of the collateral slashed
     * @dev Only a network middleware can call this function.
     */
    function executeSlash(uint256 slashIndex, bytes calldata hints) external returns (uint256 slashedAmount);

    /**
     * @notice Veto a slash with a given slash index using hints.
     * @param slashIndex index of the slash request
     * @param hints hints for checkpoints' indexes
     * @dev Only a resolver can call this function.
     */
    function vetoSlash(uint256 slashIndex, bytes calldata hints) external;

    /**
     * @notice Set a resolver for a subnetwork using hints.
     * identifier identifier of the subnetwork
     * @param resolver address of the resolver
     * @param hints hints for checkpoints' indexes
     * @dev Only a network can call this function.
     */
    function setResolver(uint96 identifier, address resolver, bytes calldata hints) external;
}

File 7 of 23 : Checkpoints.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import {Checkpoints as OZCheckpoints} from "@openzeppelin/contracts/utils/structs/Checkpoints.sol";
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";

/**
 * @dev This library defines the `Trace*` struct, for checkpointing values as they change at different points in
 * time, and later looking up past values by key.
 */
library Checkpoints {
    using OZCheckpoints for OZCheckpoints.Trace208;

    error SystemCheckpoint();

    struct Trace208 {
        OZCheckpoints.Trace208 _trace;
    }

    struct Checkpoint208 {
        uint48 _key;
        uint208 _value;
    }

    struct Trace256 {
        OZCheckpoints.Trace208 _trace;
        uint256[] _values;
    }

    struct Checkpoint256 {
        uint48 _key;
        uint256 _value;
    }

    /**
     * @dev Pushes a (`key`, `value`) pair into a Trace208 so that it is stored as the checkpoint.
     *
     * Returns previous value and new value.
     */
    function push(Trace208 storage self, uint48 key, uint208 value) internal returns (uint208, uint208) {
        return self._trace.push(key, value);
    }

    /**
     * @dev Returns the value in the last (most recent) checkpoint with a key lower or equal than the search key, or zero
     * if there is none.
     */
    function upperLookupRecent(Trace208 storage self, uint48 key) internal view returns (uint208) {
        return self._trace.upperLookupRecent(key);
    }

    /**
     * @dev Returns the value in the last (most recent) checkpoint with a key lower or equal than the search key, or zero
     * if there is none.
     *
     * NOTE: This is a variant of {upperLookupRecent} that can be optimized by getting the hint
     * (index of the checkpoint with a key lower or equal than the search key).
     */
    function upperLookupRecent(Trace208 storage self, uint48 key, bytes memory hint_) internal view returns (uint208) {
        if (hint_.length == 0) {
            return upperLookupRecent(self, key);
        }

        uint32 hint = abi.decode(hint_, (uint32));
        Checkpoint208 memory checkpoint = at(self, hint);
        if (checkpoint._key == key) {
            return checkpoint._value;
        }

        if (checkpoint._key < key && (hint == length(self) - 1 || at(self, hint + 1)._key > key)) {
            return checkpoint._value;
        }

        return upperLookupRecent(self, key);
    }

    /**
     * @dev Returns whether there is a checkpoint with a key lower or equal than the search key in the structure (i.e. it is not empty),
     * and if so the key and value in the checkpoint, and its position in the trace.
     */
    function upperLookupRecentCheckpoint(
        Trace208 storage self,
        uint48 key
    ) internal view returns (bool, uint48, uint208, uint32) {
        uint256 len = self._trace._checkpoints.length;

        uint256 low = 0;
        uint256 high = len;

        if (len > 5) {
            uint256 mid = len - Math.sqrt(len);
            if (key < _unsafeAccess(self._trace._checkpoints, mid)._key) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }

        uint256 pos = _upperBinaryLookup(self._trace._checkpoints, key, low, high);

        if (pos == 0) {
            return (false, 0, 0, 0);
        }

        OZCheckpoints.Checkpoint208 memory checkpoint = _unsafeAccess(self._trace._checkpoints, pos - 1);
        return (true, checkpoint._key, checkpoint._value, uint32(pos - 1));
    }

    /**
     * @dev Returns whether there is a checkpoint with a key lower or equal than the search key in the structure (i.e. it is not empty),
     * and if so the key and value in the checkpoint, and its position in the trace.
     *
     * NOTE: This is a variant of {upperLookupRecentCheckpoint} that can be optimized by getting the hint
     * (index of the checkpoint with a key lower or equal than the search key).
     */
    function upperLookupRecentCheckpoint(
        Trace208 storage self,
        uint48 key,
        bytes memory hint_
    ) internal view returns (bool, uint48, uint208, uint32) {
        if (hint_.length == 0) {
            return upperLookupRecentCheckpoint(self, key);
        }

        uint32 hint = abi.decode(hint_, (uint32));
        Checkpoint208 memory checkpoint = at(self, hint);
        if (checkpoint._key == key) {
            return (true, checkpoint._key, checkpoint._value, hint);
        }

        if (checkpoint._key < key && (hint == length(self) - 1 || at(self, hint + 1)._key > key)) {
            return (true, checkpoint._key, checkpoint._value, hint);
        }

        return upperLookupRecentCheckpoint(self, key);
    }

    /**
     * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
     */
    function latest(
        Trace208 storage self
    ) internal view returns (uint208) {
        return self._trace.latest();
    }

    /**
     * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
     * in the most recent checkpoint.
     */
    function latestCheckpoint(
        Trace208 storage self
    ) internal view returns (bool, uint48, uint208) {
        return self._trace.latestCheckpoint();
    }

    /**
     * @dev Returns a total number of checkpoints.
     */
    function length(
        Trace208 storage self
    ) internal view returns (uint256) {
        return self._trace.length();
    }

    /**
     * @dev Returns checkpoint at a given position.
     */
    function at(Trace208 storage self, uint32 pos) internal view returns (Checkpoint208 memory) {
        OZCheckpoints.Checkpoint208 memory checkpoint = self._trace.at(pos);
        return Checkpoint208({_key: checkpoint._key, _value: checkpoint._value});
    }

    /**
     * @dev Pops the last (most recent) checkpoint.
     */
    function pop(
        Trace208 storage self
    ) internal returns (uint208 value) {
        value = self._trace.latest();
        self._trace._checkpoints.pop();
    }

    /**
     * @dev Pushes a (`key`, `value`) pair into a Trace256 so that it is stored as the checkpoint.
     *
     * Returns previous value and new value.
     */
    function push(Trace256 storage self, uint48 key, uint256 value) internal returns (uint256, uint256) {
        if (self._values.length == 0) {
            self._values.push(0);
        }

        (bool exists, uint48 lastKey,) = self._trace.latestCheckpoint();

        uint256 len = self._values.length;
        uint256 lastValue = latest(self);
        if (exists && key == lastKey) {
            self._values[len - 1] = value;
        } else {
            self._trace.push(key, uint208(len));
            self._values.push(value);
        }

        return (lastValue, value);
    }

    /**
     * @dev Returns the value in the last (most recent) checkpoint with a key lower or equal than the search key, or zero
     * if there is none.
     */
    function upperLookupRecent(Trace256 storage self, uint48 key) internal view returns (uint256) {
        uint208 idx = self._trace.upperLookupRecent(key);
        return idx > 0 ? self._values[idx] : 0;
    }

    /**
     * @dev Returns the value in the last (most recent) checkpoint with a key lower or equal than the search key, or zero
     * if there is none.
     *
     * NOTE: This is a variant of {upperLookupRecent} that can be optimized by getting the hint
     * (index of the checkpoint with a key lower or equal than the search key).
     */
    function upperLookupRecent(Trace256 storage self, uint48 key, bytes memory hint_) internal view returns (uint256) {
        if (hint_.length == 0) {
            return upperLookupRecent(self, key);
        }

        uint32 hint = abi.decode(hint_, (uint32));
        Checkpoint256 memory checkpoint = at(self, hint);
        if (checkpoint._key == key) {
            return checkpoint._value;
        }

        if (checkpoint._key < key && (hint == length(self) - 1 || at(self, hint + 1)._key > key)) {
            return checkpoint._value;
        }

        return upperLookupRecent(self, key);
    }

    /**
     * @dev Returns whether there is a checkpoint with a key lower or equal than the search key in the structure (i.e. it is not empty),
     * and if so the key and value in the checkpoint, and its position in the trace.
     */
    function upperLookupRecentCheckpoint(
        Trace256 storage self,
        uint48 key
    ) internal view returns (bool, uint48, uint256, uint32) {
        uint256 len = self._trace._checkpoints.length;

        uint256 low = 0;
        uint256 high = len;

        if (len > 5) {
            uint256 mid = len - Math.sqrt(len);
            if (key < _unsafeAccess(self._trace._checkpoints, mid)._key) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }

        uint256 pos = _upperBinaryLookup(self._trace._checkpoints, key, low, high);

        if (pos == 0) {
            return (false, 0, 0, 0);
        }

        OZCheckpoints.Checkpoint208 memory checkpoint = _unsafeAccess(self._trace._checkpoints, pos - 1);
        return (true, checkpoint._key, self._values[checkpoint._value], uint32(pos - 1));
    }

    /**
     * @dev Returns whether there is a checkpoint with a key lower or equal than the search key in the structure (i.e. it is not empty),
     * and if so the key and value in the checkpoint, and its position in the trace.
     *
     * NOTE: This is a variant of {upperLookupRecentCheckpoint} that can be optimized by getting the hint
     * (index of the checkpoint with a key lower or equal than the search key).
     */
    function upperLookupRecentCheckpoint(
        Trace256 storage self,
        uint48 key,
        bytes memory hint_
    ) internal view returns (bool, uint48, uint256, uint32) {
        if (hint_.length == 0) {
            return upperLookupRecentCheckpoint(self, key);
        }

        uint32 hint = abi.decode(hint_, (uint32));
        Checkpoint256 memory checkpoint = at(self, hint);
        if (checkpoint._key == key) {
            return (true, checkpoint._key, checkpoint._value, hint);
        }

        if (checkpoint._key < key && (hint == length(self) - 1 || at(self, hint + 1)._key > key)) {
            return (true, checkpoint._key, checkpoint._value, hint);
        }

        return upperLookupRecentCheckpoint(self, key);
    }

    /**
     * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
     */
    function latest(
        Trace256 storage self
    ) internal view returns (uint256) {
        uint208 idx = self._trace.latest();
        return idx > 0 ? self._values[idx] : 0;
    }

    /**
     * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
     * in the most recent checkpoint.
     */
    function latestCheckpoint(
        Trace256 storage self
    ) internal view returns (bool exists, uint48 _key, uint256 _value) {
        uint256 idx;
        (exists, _key, idx) = self._trace.latestCheckpoint();
        _value = exists ? self._values[idx] : 0;
    }

    /**
     * @dev Returns a total number of checkpoints.
     */
    function length(
        Trace256 storage self
    ) internal view returns (uint256) {
        return self._trace.length();
    }

    /**
     * @dev Returns checkpoint at a given position.
     */
    function at(Trace256 storage self, uint32 pos) internal view returns (Checkpoint256 memory) {
        OZCheckpoints.Checkpoint208 memory checkpoint = self._trace.at(pos);
        return Checkpoint256({_key: checkpoint._key, _value: self._values[checkpoint._value]});
    }

    /**
     * @dev Pops the last (most recent) checkpoint.
     */
    function pop(
        Trace256 storage self
    ) internal returns (uint256 value) {
        uint208 idx = self._trace.latest();
        if (idx == 0) {
            revert SystemCheckpoint();
        }
        value = self._values[idx];
        self._trace._checkpoints.pop();
        self._values.pop();
    }

    /**
     * @dev Return the index of the last (most recent) checkpoint with a key lower or equal than the search key, or `high`
     * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
     * `high`.
     *
     * WARNING: `high` should not be greater than the array's length.
     */
    function _upperBinaryLookup(
        OZCheckpoints.Checkpoint208[] storage self,
        uint48 key,
        uint256 low,
        uint256 high
    ) private view returns (uint256) {
        while (low < high) {
            uint256 mid = Math.average(low, high);
            if (_unsafeAccess(self, mid)._key > key) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }
        return high;
    }

    /**
     * @dev Access an element of the array without performing a bounds check. The position is assumed to be within bounds.
     */
    function _unsafeAccess(
        OZCheckpoints.Checkpoint208[] storage self,
        uint256 pos
    ) private pure returns (OZCheckpoints.Checkpoint208 storage result) {
        assembly {
            mstore(0, self.slot)
            result.slot := add(keccak256(0, 0x20), pos)
        }
    }
}

File 8 of 23 : Subnetwork.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

/**
 * @dev This library adds functions to work with subnetworks.
 */
library Subnetwork {
    function subnetwork(address network_, uint96 identifier_) internal pure returns (bytes32) {
        return bytes32(uint256(uint160(network_)) << 96 | identifier_);
    }

    function network(
        bytes32 subnetwork_
    ) internal pure returns (address) {
        return address(uint160(uint256(subnetwork_ >> 96)));
    }

    function identifier(
        bytes32 subnetwork_
    ) internal pure returns (uint96) {
        return uint96(uint256(subnetwork_));
    }
}

File 9 of 23 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 10 of 23 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }
}

File 11 of 23 : Time.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/types/Time.sol)

pragma solidity ^0.8.20;

import {Math} from "../math/Math.sol";
import {SafeCast} from "../math/SafeCast.sol";

/**
 * @dev This library provides helpers for manipulating time-related objects.
 *
 * It uses the following types:
 * - `uint48` for timepoints
 * - `uint32` for durations
 *
 * While the library doesn't provide specific types for timepoints and duration, it does provide:
 * - a `Delay` type to represent duration that can be programmed to change value automatically at a given point
 * - additional helper functions
 */
library Time {
    using Time for *;

    /**
     * @dev Get the block timestamp as a Timepoint.
     */
    function timestamp() internal view returns (uint48) {
        return SafeCast.toUint48(block.timestamp);
    }

    /**
     * @dev Get the block number as a Timepoint.
     */
    function blockNumber() internal view returns (uint48) {
        return SafeCast.toUint48(block.number);
    }

    // ==================================================== Delay =====================================================
    /**
     * @dev A `Delay` is a uint32 duration that can be programmed to change value automatically at a given point in the
     * future. The "effect" timepoint describes when the transitions happens from the "old" value to the "new" value.
     * This allows updating the delay applied to some operation while keeping some guarantees.
     *
     * In particular, the {update} function guarantees that if the delay is reduced, the old delay still applies for
     * some time. For example if the delay is currently 7 days to do an upgrade, the admin should not be able to set
     * the delay to 0 and upgrade immediately. If the admin wants to reduce the delay, the old delay (7 days) should
     * still apply for some time.
     *
     *
     * The `Delay` type is 112 bits long, and packs the following:
     *
     * ```
     *   | [uint48]: effect date (timepoint)
     *   |           | [uint32]: value before (duration)
     *   ↓           ↓       ↓ [uint32]: value after (duration)
     * 0xAAAAAAAAAAAABBBBBBBBCCCCCCCC
     * ```
     *
     * NOTE: The {get} and {withUpdate} functions operate using timestamps. Block number based delays are not currently
     * supported.
     */
    type Delay is uint112;

    /**
     * @dev Wrap a duration into a Delay to add the one-step "update in the future" feature
     */
    function toDelay(uint32 duration) internal pure returns (Delay) {
        return Delay.wrap(duration);
    }

    /**
     * @dev Get the value at a given timepoint plus the pending value and effect timepoint if there is a scheduled
     * change after this timepoint. If the effect timepoint is 0, then the pending value should not be considered.
     */
    function _getFullAt(Delay self, uint48 timepoint) private pure returns (uint32, uint32, uint48) {
        (uint32 valueBefore, uint32 valueAfter, uint48 effect) = self.unpack();
        return effect <= timepoint ? (valueAfter, 0, 0) : (valueBefore, valueAfter, effect);
    }

    /**
     * @dev Get the current value plus the pending value and effect timepoint if there is a scheduled change. If the
     * effect timepoint is 0, then the pending value should not be considered.
     */
    function getFull(Delay self) internal view returns (uint32, uint32, uint48) {
        return _getFullAt(self, timestamp());
    }

    /**
     * @dev Get the current value.
     */
    function get(Delay self) internal view returns (uint32) {
        (uint32 delay, , ) = self.getFull();
        return delay;
    }

    /**
     * @dev Update a Delay object so that it takes a new duration after a timepoint that is automatically computed to
     * enforce the old delay at the moment of the update. Returns the updated Delay object and the timestamp when the
     * new delay becomes effective.
     */
    function withUpdate(
        Delay self,
        uint32 newValue,
        uint32 minSetback
    ) internal view returns (Delay updatedDelay, uint48 effect) {
        uint32 value = self.get();
        uint32 setback = uint32(Math.max(minSetback, value > newValue ? value - newValue : 0));
        effect = timestamp() + setback;
        return (pack(value, newValue, effect), effect);
    }

    /**
     * @dev Split a delay into its components: valueBefore, valueAfter and effect (transition timepoint).
     */
    function unpack(Delay self) internal pure returns (uint32 valueBefore, uint32 valueAfter, uint48 effect) {
        uint112 raw = Delay.unwrap(self);

        valueAfter = uint32(raw);
        valueBefore = uint32(raw >> 32);
        effect = uint48(raw >> 64);

        return (valueBefore, valueAfter, effect);
    }

    /**
     * @dev pack the components into a Delay object.
     */
    function pack(uint32 valueBefore, uint32 valueAfter, uint48 effect) internal pure returns (Delay) {
        return Delay.wrap((uint112(effect) << 64) | (uint112(valueBefore) << 32) | uint112(valueAfter));
    }
}

File 12 of 23 : Entity.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.25;

import {IEntity} from "../../interfaces/common/IEntity.sol";

import {Initializable} from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";

abstract contract Entity is Initializable, IEntity {
    /**
     * @inheritdoc IEntity
     */
    address public immutable FACTORY;

    /**
     * @inheritdoc IEntity
     */
    uint64 public immutable TYPE;

    constructor(address factory, uint64 type_) {
        _disableInitializers();

        FACTORY = factory;
        TYPE = type_;
    }

    /**
     * @inheritdoc IEntity
     */
    function initialize(
        bytes calldata data
    ) external initializer {
        _initialize(data);
    }

    function _initialize(
        bytes calldata /* data */
    ) internal virtual {}
}

File 13 of 23 : StaticDelegateCallable.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.25;

import {IStaticDelegateCallable} from "../../interfaces/common/IStaticDelegateCallable.sol";

abstract contract StaticDelegateCallable is IStaticDelegateCallable {
    /**
     * @inheritdoc IStaticDelegateCallable
     */
    function staticDelegateCall(address target, bytes calldata data) external {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        bytes memory revertData = abi.encode(success, returndata);
        assembly {
            revert(add(32, revertData), mload(revertData))
        }
    }
}

File 14 of 23 : IBaseSlasher.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import {IEntity} from "../common/IEntity.sol";

interface IBaseSlasher is IEntity {
    error NoBurner();
    error InsufficientBurnerGas();
    error NotNetworkMiddleware();
    error NotVault();

    /**
     * @notice Base parameters needed for slashers' deployment.
     * @param isBurnerHook if the burner is needed to be called on a slashing
     */
    struct BaseParams {
        bool isBurnerHook;
    }

    /**
     * @notice Hints for a slashable stake.
     * @param stakeHints hints for the stake checkpoints
     * @param cumulativeSlashFromHint hint for the cumulative slash amount at a capture timestamp
     */
    struct SlashableStakeHints {
        bytes stakeHints;
        bytes cumulativeSlashFromHint;
    }

    /**
     * @notice General data for the delegator.
     * @param slasherType type of the slasher
     * @param data slasher-dependent data for the delegator
     */
    struct GeneralDelegatorData {
        uint64 slasherType;
        bytes data;
    }

    /**
     * @notice Get a gas limit for the burner.
     * @return value of the burner gas limit
     */
    function BURNER_GAS_LIMIT() external view returns (uint256);

    /**
     * @notice Get a reserve gas between the gas limit check and the burner's execution.
     * @return value of the reserve gas
     */
    function BURNER_RESERVE() external view returns (uint256);

    /**
     * @notice Get the vault factory's address.
     * @return address of the vault factory
     */
    function VAULT_FACTORY() external view returns (address);

    /**
     * @notice Get the network middleware service's address.
     * @return address of the network middleware service
     */
    function NETWORK_MIDDLEWARE_SERVICE() external view returns (address);

    /**
     * @notice Get the vault's address.
     * @return address of the vault to perform slashings on
     */
    function vault() external view returns (address);

    /**
     * @notice Get if the burner is needed to be called on a slashing.
     * @return if the burner is a hook
     */
    function isBurnerHook() external view returns (bool);

    /**
     * @notice Get the latest capture timestamp that was slashed on a subnetwork.
     * @param subnetwork full identifier of the subnetwork (address of the network concatenated with the uint96 identifier)
     * @param operator address of the operator
     * @return latest capture timestamp that was slashed
     */
    function latestSlashedCaptureTimestamp(bytes32 subnetwork, address operator) external view returns (uint48);

    /**
     * @notice Get a cumulative slash amount for an operator on a subnetwork until a given timestamp (inclusively) using a hint.
     * @param subnetwork full identifier of the subnetwork (address of the network concatenated with the uint96 identifier)
     * @param operator address of the operator
     * @param timestamp time point to get the cumulative slash amount until (inclusively)
     * @param hint hint for the checkpoint index
     * @return cumulative slash amount until the given timestamp (inclusively)
     */
    function cumulativeSlashAt(
        bytes32 subnetwork,
        address operator,
        uint48 timestamp,
        bytes memory hint
    ) external view returns (uint256);

    /**
     * @notice Get a cumulative slash amount for an operator on a subnetwork.
     * @param subnetwork full identifier of the subnetwork (address of the network concatenated with the uint96 identifier)
     * @param operator address of the operator
     * @return cumulative slash amount
     */
    function cumulativeSlash(bytes32 subnetwork, address operator) external view returns (uint256);

    /**
     * @notice Get a slashable amount of a stake got at a given capture timestamp using hints.
     * @param subnetwork full identifier of the subnetwork (address of the network concatenated with the uint96 identifier)
     * @param operator address of the operator
     * @param captureTimestamp time point to get the stake amount at
     * @param hints hints for the checkpoints' indexes
     * @return slashable amount of the stake
     */
    function slashableStake(
        bytes32 subnetwork,
        address operator,
        uint48 captureTimestamp,
        bytes memory hints
    ) external view returns (uint256);
}

File 15 of 23 : IBurner.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

interface IBurner {
    /**
     * @notice Called when a slash happens.
     * @param subnetwork full identifier of the subnetwork (address of the network concatenated with the uint96 identifier)
     * @param operator address of the operator
     * @param amount virtual amount of the collateral slashed
     * @param captureTimestamp time point when the stake was captured
     */
    function onSlash(bytes32 subnetwork, address operator, uint256 amount, uint48 captureTimestamp) external;
}

File 16 of 23 : INetworkMiddlewareService.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

interface INetworkMiddlewareService {
    error AlreadySet();
    error NotNetwork();

    /**
     * @notice Emitted when a middleware is set for a network.
     * @param network address of the network
     * @param middleware new middleware of the network
     */
    event SetMiddleware(address indexed network, address middleware);

    /**
     * @notice Get the network registry's address.
     * @return address of the network registry
     */
    function NETWORK_REGISTRY() external view returns (address);

    /**
     * @notice Get a given network's middleware.
     * @param network address of the network
     * @return middleware of the network
     */
    function middleware(
        address network
    ) external view returns (address);

    /**
     * @notice Set a new middleware for a calling network.
     * @param middleware new middleware of the network
     */
    function setMiddleware(
        address middleware
    ) external;
}

File 17 of 23 : ReentrancyGuardUpgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ReentrancyGuard.sol)

pragma solidity ^0.8.20;
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuardUpgradeable is Initializable {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant NOT_ENTERED = 1;
    uint256 private constant ENTERED = 2;

    /// @custom:storage-location erc7201:openzeppelin.storage.ReentrancyGuard
    struct ReentrancyGuardStorage {
        uint256 _status;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ReentrancyGuard")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant ReentrancyGuardStorageLocation = 0x9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f00;

    function _getReentrancyGuardStorage() private pure returns (ReentrancyGuardStorage storage $) {
        assembly {
            $.slot := ReentrancyGuardStorageLocation
        }
    }

    /**
     * @dev Unauthorized reentrant call.
     */
    error ReentrancyGuardReentrantCall();

    function __ReentrancyGuard_init() internal onlyInitializing {
        __ReentrancyGuard_init_unchained();
    }

    function __ReentrancyGuard_init_unchained() internal onlyInitializing {
        ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage();
        $._status = NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage();
        // On the first call to nonReentrant, _status will be NOT_ENTERED
        if ($._status == ENTERED) {
            revert ReentrancyGuardReentrantCall();
        }

        // Any calls to nonReentrant after this point will fail
        $._status = ENTERED;
    }

    function _nonReentrantAfter() private {
        ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage();
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        $._status = NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage();
        return $._status == ENTERED;
    }
}

File 18 of 23 : IEntity.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

interface IEntity {
    error NotInitialized();

    /**
     * @notice Get the factory's address.
     * @return address of the factory
     */
    function FACTORY() external view returns (address);

    /**
     * @notice Get the entity's type.
     * @return type of the entity
     */
    function TYPE() external view returns (uint64);

    /**
     * @notice Initialize this entity contract by using a given data.
     * @param data some data to use
     */
    function initialize(
        bytes calldata data
    ) external;
}

File 19 of 23 : IMigratableEntity.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

interface IMigratableEntity {
    error AlreadyInitialized();
    error NotFactory();
    error NotInitialized();

    /**
     * @notice Get the factory's address.
     * @return address of the factory
     */
    function FACTORY() external view returns (address);

    /**
     * @notice Get the entity's version.
     * @return version of the entity
     * @dev Starts from 1.
     */
    function version() external view returns (uint64);

    /**
     * @notice Initialize this entity contract by using a given data and setting a particular version and owner.
     * @param initialVersion initial version of the entity
     * @param owner initial owner of the entity
     * @param data some data to use
     */
    function initialize(uint64 initialVersion, address owner, bytes calldata data) external;

    /**
     * @notice Migrate this entity to a particular newer version using a given data.
     * @param newVersion new version of the entity
     * @param data some data to use
     */
    function migrate(uint64 newVersion, bytes calldata data) external;
}

File 20 of 23 : IVaultStorage.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

interface IVaultStorage {
    error InvalidTimestamp();
    error NoPreviousEpoch();

    /**
     * @notice Get a deposit whitelist enabler/disabler's role.
     * @return identifier of the whitelist enabler/disabler role
     */
    function DEPOSIT_WHITELIST_SET_ROLE() external view returns (bytes32);

    /**
     * @notice Get a depositor whitelist status setter's role.
     * @return identifier of the depositor whitelist status setter role
     */
    function DEPOSITOR_WHITELIST_ROLE() external view returns (bytes32);

    /**
     * @notice Get a deposit limit enabler/disabler's role.
     * @return identifier of the deposit limit enabler/disabler role
     */
    function IS_DEPOSIT_LIMIT_SET_ROLE() external view returns (bytes32);

    /**
     * @notice Get a deposit limit setter's role.
     * @return identifier of the deposit limit setter role
     */
    function DEPOSIT_LIMIT_SET_ROLE() external view returns (bytes32);

    /**
     * @notice Get the delegator factory's address.
     * @return address of the delegator factory
     */
    function DELEGATOR_FACTORY() external view returns (address);

    /**
     * @notice Get the slasher factory's address.
     * @return address of the slasher factory
     */
    function SLASHER_FACTORY() external view returns (address);

    /**
     * @notice Get a vault collateral.
     * @return address of the underlying collateral
     */
    function collateral() external view returns (address);

    /**
     * @notice Get a burner to issue debt to (e.g., 0xdEaD or some unwrapper contract).
     * @return address of the burner
     */
    function burner() external view returns (address);

    /**
     * @notice Get a delegator (it delegates the vault's stake to networks and operators).
     * @return address of the delegator
     */
    function delegator() external view returns (address);

    /**
     * @notice Get if the delegator is initialized.
     * @return if the delegator is initialized
     */
    function isDelegatorInitialized() external view returns (bool);

    /**
     * @notice Get a slasher (it provides networks a slashing mechanism).
     * @return address of the slasher
     */
    function slasher() external view returns (address);

    /**
     * @notice Get if the slasher is initialized.
     * @return if the slasher is initialized
     */
    function isSlasherInitialized() external view returns (bool);

    /**
     * @notice Get a time point of the epoch duration set.
     * @return time point of the epoch duration set
     */
    function epochDurationInit() external view returns (uint48);

    /**
     * @notice Get a duration of the vault epoch.
     * @return duration of the epoch
     */
    function epochDuration() external view returns (uint48);

    /**
     * @notice Get an epoch at a given timestamp.
     * @param timestamp time point to get the epoch at
     * @return epoch at the timestamp
     * @dev Reverts if the timestamp is less than the start of the epoch 0.
     */
    function epochAt(
        uint48 timestamp
    ) external view returns (uint256);

    /**
     * @notice Get a current vault epoch.
     * @return current epoch
     */
    function currentEpoch() external view returns (uint256);

    /**
     * @notice Get a start of the current vault epoch.
     * @return start of the current epoch
     */
    function currentEpochStart() external view returns (uint48);

    /**
     * @notice Get a start of the previous vault epoch.
     * @return start of the previous epoch
     * @dev Reverts if the current epoch is 0.
     */
    function previousEpochStart() external view returns (uint48);

    /**
     * @notice Get a start of the next vault epoch.
     * @return start of the next epoch
     */
    function nextEpochStart() external view returns (uint48);

    /**
     * @notice Get if the deposit whitelist is enabled.
     * @return if the deposit whitelist is enabled
     */
    function depositWhitelist() external view returns (bool);

    /**
     * @notice Get if a given account is whitelisted as a depositor.
     * @param account address to check
     * @return if the account is whitelisted as a depositor
     */
    function isDepositorWhitelisted(
        address account
    ) external view returns (bool);

    /**
     * @notice Get if the deposit limit is set.
     * @return if the deposit limit is set
     */
    function isDepositLimit() external view returns (bool);

    /**
     * @notice Get a deposit limit (maximum amount of the active stake that can be in the vault simultaneously).
     * @return deposit limit
     */
    function depositLimit() external view returns (uint256);

    /**
     * @notice Get a total number of active shares in the vault at a given timestamp using a hint.
     * @param timestamp time point to get the total number of active shares at
     * @param hint hint for the checkpoint index
     * @return total number of active shares at the timestamp
     */
    function activeSharesAt(uint48 timestamp, bytes memory hint) external view returns (uint256);

    /**
     * @notice Get a total number of active shares in the vault.
     * @return total number of active shares
     */
    function activeShares() external view returns (uint256);

    /**
     * @notice Get a total amount of active stake in the vault at a given timestamp using a hint.
     * @param timestamp time point to get the total active stake at
     * @param hint hint for the checkpoint index
     * @return total amount of active stake at the timestamp
     */
    function activeStakeAt(uint48 timestamp, bytes memory hint) external view returns (uint256);

    /**
     * @notice Get a total amount of active stake in the vault.
     * @return total amount of active stake
     */
    function activeStake() external view returns (uint256);

    /**
     * @notice Get a total number of active shares for a particular account at a given timestamp using a hint.
     * @param account account to get the number of active shares for
     * @param timestamp time point to get the number of active shares for the account at
     * @param hint hint for the checkpoint index
     * @return number of active shares for the account at the timestamp
     */
    function activeSharesOfAt(address account, uint48 timestamp, bytes memory hint) external view returns (uint256);

    /**
     * @notice Get a number of active shares for a particular account.
     * @param account account to get the number of active shares for
     * @return number of active shares for the account
     */
    function activeSharesOf(
        address account
    ) external view returns (uint256);

    /**
     * @notice Get a total amount of the withdrawals at a given epoch.
     * @param epoch epoch to get the total amount of the withdrawals at
     * @return total amount of the withdrawals at the epoch
     */
    function withdrawals(
        uint256 epoch
    ) external view returns (uint256);

    /**
     * @notice Get a total number of withdrawal shares at a given epoch.
     * @param epoch epoch to get the total number of withdrawal shares at
     * @return total number of withdrawal shares at the epoch
     */
    function withdrawalShares(
        uint256 epoch
    ) external view returns (uint256);

    /**
     * @notice Get a number of withdrawal shares for a particular account at a given epoch (zero if claimed).
     * @param epoch epoch to get the number of withdrawal shares for the account at
     * @param account account to get the number of withdrawal shares for
     * @return number of withdrawal shares for the account at the epoch
     */
    function withdrawalSharesOf(uint256 epoch, address account) external view returns (uint256);

    /**
     * @notice Get if the withdrawals are claimed for a particular account at a given epoch.
     * @param epoch epoch to check the withdrawals for the account at
     * @param account account to check the withdrawals for
     * @return if the withdrawals are claimed for the account at the epoch
     */
    function isWithdrawalsClaimed(uint256 epoch, address account) external view returns (bool);
}

File 21 of 23 : Checkpoints.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/Checkpoints.sol)
// This file was procedurally generated from scripts/generate/templates/Checkpoints.js.

pragma solidity ^0.8.20;

import {Math} from "../math/Math.sol";

/**
 * @dev This library defines the `Trace*` struct, for checkpointing values as they change at different points in
 * time, and later looking up past values by block number. See {Votes} as an example.
 *
 * To create a history of checkpoints define a variable type `Checkpoints.Trace*` in your contract, and store a new
 * checkpoint for the current transaction block using the {push} function.
 */
library Checkpoints {
    /**
     * @dev A value was attempted to be inserted on a past checkpoint.
     */
    error CheckpointUnorderedInsertion();

    struct Trace224 {
        Checkpoint224[] _checkpoints;
    }

    struct Checkpoint224 {
        uint32 _key;
        uint224 _value;
    }

    /**
     * @dev Pushes a (`key`, `value`) pair into a Trace224 so that it is stored as the checkpoint.
     *
     * Returns previous value and new value.
     *
     * IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint32).max` key set will disable the
     * library.
     */
    function push(Trace224 storage self, uint32 key, uint224 value) internal returns (uint224, uint224) {
        return _insert(self._checkpoints, key, value);
    }

    /**
     * @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if
     * there is none.
     */
    function lowerLookup(Trace224 storage self, uint32 key) internal view returns (uint224) {
        uint256 len = self._checkpoints.length;
        uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
        return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value;
    }

    /**
     * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
     * if there is none.
     */
    function upperLookup(Trace224 storage self, uint32 key) internal view returns (uint224) {
        uint256 len = self._checkpoints.length;
        uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
     * if there is none.
     *
     * NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high
     * keys).
     */
    function upperLookupRecent(Trace224 storage self, uint32 key) internal view returns (uint224) {
        uint256 len = self._checkpoints.length;

        uint256 low = 0;
        uint256 high = len;

        if (len > 5) {
            uint256 mid = len - Math.sqrt(len);
            if (key < _unsafeAccess(self._checkpoints, mid)._key) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }

        uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);

        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
     */
    function latest(Trace224 storage self) internal view returns (uint224) {
        uint256 pos = self._checkpoints.length;
        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
     * in the most recent checkpoint.
     */
    function latestCheckpoint(Trace224 storage self) internal view returns (bool exists, uint32 _key, uint224 _value) {
        uint256 pos = self._checkpoints.length;
        if (pos == 0) {
            return (false, 0, 0);
        } else {
            Checkpoint224 memory ckpt = _unsafeAccess(self._checkpoints, pos - 1);
            return (true, ckpt._key, ckpt._value);
        }
    }

    /**
     * @dev Returns the number of checkpoint.
     */
    function length(Trace224 storage self) internal view returns (uint256) {
        return self._checkpoints.length;
    }

    /**
     * @dev Returns checkpoint at given position.
     */
    function at(Trace224 storage self, uint32 pos) internal view returns (Checkpoint224 memory) {
        return self._checkpoints[pos];
    }

    /**
     * @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
     * or by updating the last one.
     */
    function _insert(Checkpoint224[] storage self, uint32 key, uint224 value) private returns (uint224, uint224) {
        uint256 pos = self.length;

        if (pos > 0) {
            // Copying to memory is important here.
            Checkpoint224 memory last = _unsafeAccess(self, pos - 1);

            // Checkpoint keys must be non-decreasing.
            if (last._key > key) {
                revert CheckpointUnorderedInsertion();
            }

            // Update or push new checkpoint
            if (last._key == key) {
                _unsafeAccess(self, pos - 1)._value = value;
            } else {
                self.push(Checkpoint224({_key: key, _value: value}));
            }
            return (last._value, value);
        } else {
            self.push(Checkpoint224({_key: key, _value: value}));
            return (0, value);
        }
    }

    /**
     * @dev Return the index of the last (most recent) checkpoint with key lower or equal than the search key, or `high`
     * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
     * `high`.
     *
     * WARNING: `high` should not be greater than the array's length.
     */
    function _upperBinaryLookup(
        Checkpoint224[] storage self,
        uint32 key,
        uint256 low,
        uint256 high
    ) private view returns (uint256) {
        while (low < high) {
            uint256 mid = Math.average(low, high);
            if (_unsafeAccess(self, mid)._key > key) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }
        return high;
    }

    /**
     * @dev Return the index of the first (oldest) checkpoint with key is greater or equal than the search key, or
     * `high` if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and
     * exclusive `high`.
     *
     * WARNING: `high` should not be greater than the array's length.
     */
    function _lowerBinaryLookup(
        Checkpoint224[] storage self,
        uint32 key,
        uint256 low,
        uint256 high
    ) private view returns (uint256) {
        while (low < high) {
            uint256 mid = Math.average(low, high);
            if (_unsafeAccess(self, mid)._key < key) {
                low = mid + 1;
            } else {
                high = mid;
            }
        }
        return high;
    }

    /**
     * @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
     */
    function _unsafeAccess(
        Checkpoint224[] storage self,
        uint256 pos
    ) private pure returns (Checkpoint224 storage result) {
        assembly {
            mstore(0, self.slot)
            result.slot := add(keccak256(0, 0x20), pos)
        }
    }

    struct Trace208 {
        Checkpoint208[] _checkpoints;
    }

    struct Checkpoint208 {
        uint48 _key;
        uint208 _value;
    }

    /**
     * @dev Pushes a (`key`, `value`) pair into a Trace208 so that it is stored as the checkpoint.
     *
     * Returns previous value and new value.
     *
     * IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint48).max` key set will disable the
     * library.
     */
    function push(Trace208 storage self, uint48 key, uint208 value) internal returns (uint208, uint208) {
        return _insert(self._checkpoints, key, value);
    }

    /**
     * @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if
     * there is none.
     */
    function lowerLookup(Trace208 storage self, uint48 key) internal view returns (uint208) {
        uint256 len = self._checkpoints.length;
        uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
        return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value;
    }

    /**
     * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
     * if there is none.
     */
    function upperLookup(Trace208 storage self, uint48 key) internal view returns (uint208) {
        uint256 len = self._checkpoints.length;
        uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
     * if there is none.
     *
     * NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high
     * keys).
     */
    function upperLookupRecent(Trace208 storage self, uint48 key) internal view returns (uint208) {
        uint256 len = self._checkpoints.length;

        uint256 low = 0;
        uint256 high = len;

        if (len > 5) {
            uint256 mid = len - Math.sqrt(len);
            if (key < _unsafeAccess(self._checkpoints, mid)._key) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }

        uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);

        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
     */
    function latest(Trace208 storage self) internal view returns (uint208) {
        uint256 pos = self._checkpoints.length;
        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
     * in the most recent checkpoint.
     */
    function latestCheckpoint(Trace208 storage self) internal view returns (bool exists, uint48 _key, uint208 _value) {
        uint256 pos = self._checkpoints.length;
        if (pos == 0) {
            return (false, 0, 0);
        } else {
            Checkpoint208 memory ckpt = _unsafeAccess(self._checkpoints, pos - 1);
            return (true, ckpt._key, ckpt._value);
        }
    }

    /**
     * @dev Returns the number of checkpoint.
     */
    function length(Trace208 storage self) internal view returns (uint256) {
        return self._checkpoints.length;
    }

    /**
     * @dev Returns checkpoint at given position.
     */
    function at(Trace208 storage self, uint32 pos) internal view returns (Checkpoint208 memory) {
        return self._checkpoints[pos];
    }

    /**
     * @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
     * or by updating the last one.
     */
    function _insert(Checkpoint208[] storage self, uint48 key, uint208 value) private returns (uint208, uint208) {
        uint256 pos = self.length;

        if (pos > 0) {
            // Copying to memory is important here.
            Checkpoint208 memory last = _unsafeAccess(self, pos - 1);

            // Checkpoint keys must be non-decreasing.
            if (last._key > key) {
                revert CheckpointUnorderedInsertion();
            }

            // Update or push new checkpoint
            if (last._key == key) {
                _unsafeAccess(self, pos - 1)._value = value;
            } else {
                self.push(Checkpoint208({_key: key, _value: value}));
            }
            return (last._value, value);
        } else {
            self.push(Checkpoint208({_key: key, _value: value}));
            return (0, value);
        }
    }

    /**
     * @dev Return the index of the last (most recent) checkpoint with key lower or equal than the search key, or `high`
     * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
     * `high`.
     *
     * WARNING: `high` should not be greater than the array's length.
     */
    function _upperBinaryLookup(
        Checkpoint208[] storage self,
        uint48 key,
        uint256 low,
        uint256 high
    ) private view returns (uint256) {
        while (low < high) {
            uint256 mid = Math.average(low, high);
            if (_unsafeAccess(self, mid)._key > key) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }
        return high;
    }

    /**
     * @dev Return the index of the first (oldest) checkpoint with key is greater or equal than the search key, or
     * `high` if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and
     * exclusive `high`.
     *
     * WARNING: `high` should not be greater than the array's length.
     */
    function _lowerBinaryLookup(
        Checkpoint208[] storage self,
        uint48 key,
        uint256 low,
        uint256 high
    ) private view returns (uint256) {
        while (low < high) {
            uint256 mid = Math.average(low, high);
            if (_unsafeAccess(self, mid)._key < key) {
                low = mid + 1;
            } else {
                high = mid;
            }
        }
        return high;
    }

    /**
     * @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
     */
    function _unsafeAccess(
        Checkpoint208[] storage self,
        uint256 pos
    ) private pure returns (Checkpoint208 storage result) {
        assembly {
            mstore(0, self.slot)
            result.slot := add(keccak256(0, 0x20), pos)
        }
    }

    struct Trace160 {
        Checkpoint160[] _checkpoints;
    }

    struct Checkpoint160 {
        uint96 _key;
        uint160 _value;
    }

    /**
     * @dev Pushes a (`key`, `value`) pair into a Trace160 so that it is stored as the checkpoint.
     *
     * Returns previous value and new value.
     *
     * IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint96).max` key set will disable the
     * library.
     */
    function push(Trace160 storage self, uint96 key, uint160 value) internal returns (uint160, uint160) {
        return _insert(self._checkpoints, key, value);
    }

    /**
     * @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if
     * there is none.
     */
    function lowerLookup(Trace160 storage self, uint96 key) internal view returns (uint160) {
        uint256 len = self._checkpoints.length;
        uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
        return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value;
    }

    /**
     * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
     * if there is none.
     */
    function upperLookup(Trace160 storage self, uint96 key) internal view returns (uint160) {
        uint256 len = self._checkpoints.length;
        uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
     * if there is none.
     *
     * NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high
     * keys).
     */
    function upperLookupRecent(Trace160 storage self, uint96 key) internal view returns (uint160) {
        uint256 len = self._checkpoints.length;

        uint256 low = 0;
        uint256 high = len;

        if (len > 5) {
            uint256 mid = len - Math.sqrt(len);
            if (key < _unsafeAccess(self._checkpoints, mid)._key) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }

        uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);

        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
     */
    function latest(Trace160 storage self) internal view returns (uint160) {
        uint256 pos = self._checkpoints.length;
        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
     * in the most recent checkpoint.
     */
    function latestCheckpoint(Trace160 storage self) internal view returns (bool exists, uint96 _key, uint160 _value) {
        uint256 pos = self._checkpoints.length;
        if (pos == 0) {
            return (false, 0, 0);
        } else {
            Checkpoint160 memory ckpt = _unsafeAccess(self._checkpoints, pos - 1);
            return (true, ckpt._key, ckpt._value);
        }
    }

    /**
     * @dev Returns the number of checkpoint.
     */
    function length(Trace160 storage self) internal view returns (uint256) {
        return self._checkpoints.length;
    }

    /**
     * @dev Returns checkpoint at given position.
     */
    function at(Trace160 storage self, uint32 pos) internal view returns (Checkpoint160 memory) {
        return self._checkpoints[pos];
    }

    /**
     * @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
     * or by updating the last one.
     */
    function _insert(Checkpoint160[] storage self, uint96 key, uint160 value) private returns (uint160, uint160) {
        uint256 pos = self.length;

        if (pos > 0) {
            // Copying to memory is important here.
            Checkpoint160 memory last = _unsafeAccess(self, pos - 1);

            // Checkpoint keys must be non-decreasing.
            if (last._key > key) {
                revert CheckpointUnorderedInsertion();
            }

            // Update or push new checkpoint
            if (last._key == key) {
                _unsafeAccess(self, pos - 1)._value = value;
            } else {
                self.push(Checkpoint160({_key: key, _value: value}));
            }
            return (last._value, value);
        } else {
            self.push(Checkpoint160({_key: key, _value: value}));
            return (0, value);
        }
    }

    /**
     * @dev Return the index of the last (most recent) checkpoint with key lower or equal than the search key, or `high`
     * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
     * `high`.
     *
     * WARNING: `high` should not be greater than the array's length.
     */
    function _upperBinaryLookup(
        Checkpoint160[] storage self,
        uint96 key,
        uint256 low,
        uint256 high
    ) private view returns (uint256) {
        while (low < high) {
            uint256 mid = Math.average(low, high);
            if (_unsafeAccess(self, mid)._key > key) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }
        return high;
    }

    /**
     * @dev Return the index of the first (oldest) checkpoint with key is greater or equal than the search key, or
     * `high` if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and
     * exclusive `high`.
     *
     * WARNING: `high` should not be greater than the array's length.
     */
    function _lowerBinaryLookup(
        Checkpoint160[] storage self,
        uint96 key,
        uint256 low,
        uint256 high
    ) private view returns (uint256) {
        while (low < high) {
            uint256 mid = Math.average(low, high);
            if (_unsafeAccess(self, mid)._key < key) {
                low = mid + 1;
            } else {
                high = mid;
            }
        }
        return high;
    }

    /**
     * @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
     */
    function _unsafeAccess(
        Checkpoint160[] storage self,
        uint256 pos
    ) private pure returns (Checkpoint160 storage result) {
        assembly {
            mstore(0, self.slot)
            result.slot := add(keccak256(0, 0x20), pos)
        }
    }
}

File 22 of 23 : Initializable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.20;

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```solidity
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 *
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Storage of the initializable contract.
     *
     * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
     * when using with upgradeable contracts.
     *
     * @custom:storage-location erc7201:openzeppelin.storage.Initializable
     */
    struct InitializableStorage {
        /**
         * @dev Indicates that the contract has been initialized.
         */
        uint64 _initialized;
        /**
         * @dev Indicates that the contract is in the process of being initialized.
         */
        bool _initializing;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;

    /**
     * @dev The contract is already initialized.
     */
    error InvalidInitialization();

    /**
     * @dev The contract is not initializing.
     */
    error NotInitializing();

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint64 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts.
     *
     * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
     * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
     * production.
     *
     * Emits an {Initialized} event.
     */
    modifier initializer() {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        // Cache values to avoid duplicated sloads
        bool isTopLevelCall = !$._initializing;
        uint64 initialized = $._initialized;

        // Allowed calls:
        // - initialSetup: the contract is not in the initializing state and no previous version was
        //                 initialized
        // - construction: the contract is initialized at version 1 (no reininitialization) and the
        //                 current contract is just being deployed
        bool initialSetup = initialized == 0 && isTopLevelCall;
        bool construction = initialized == 1 && address(this).code.length == 0;

        if (!initialSetup && !construction) {
            revert InvalidInitialization();
        }
        $._initialized = 1;
        if (isTopLevelCall) {
            $._initializing = true;
        }
        _;
        if (isTopLevelCall) {
            $._initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
     * are added through upgrades and that require initialization.
     *
     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
     * cannot be nested. If one is invoked in the context of another, execution will revert.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     *
     * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
     *
     * Emits an {Initialized} event.
     */
    modifier reinitializer(uint64 version) {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing || $._initialized >= version) {
            revert InvalidInitialization();
        }
        $._initialized = version;
        $._initializing = true;
        _;
        $._initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        _checkInitializing();
        _;
    }

    /**
     * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
     */
    function _checkInitializing() internal view virtual {
        if (!_isInitializing()) {
            revert NotInitializing();
        }
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     *
     * Emits an {Initialized} event the first time it is successfully executed.
     */
    function _disableInitializers() internal virtual {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing) {
            revert InvalidInitialization();
        }
        if ($._initialized != type(uint64).max) {
            $._initialized = type(uint64).max;
            emit Initialized(type(uint64).max);
        }
    }

    /**
     * @dev Returns the highest version that has been initialized. See {reinitializer}.
     */
    function _getInitializedVersion() internal view returns (uint64) {
        return _getInitializableStorage()._initialized;
    }

    /**
     * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
     */
    function _isInitializing() internal view returns (bool) {
        return _getInitializableStorage()._initializing;
    }

    /**
     * @dev Returns a pointer to the storage namespace.
     */
    // solhint-disable-next-line var-name-mixedcase
    function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
        assembly {
            $.slot := INITIALIZABLE_STORAGE
        }
    }
}

File 23 of 23 : IStaticDelegateCallable.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

interface IStaticDelegateCallable {
    /**
     * @notice Make a delegatecall from this contract to a given target contract with a particular data (always reverts with a return data).
     * @param target address of the contract to make a delegatecall to
     * @param data data to make a delegatecall with
     * @dev It allows to use this contract's storage on-chain.
     */
    function staticDelegateCall(address target, bytes calldata data) external;
}

Settings
{
  "remappings": [
    "forge-std/=lib/forge-std/src/",
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
    "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "paris",
  "viaIR": true,
  "libraries": {}
}

Contract ABI

[{"inputs":[{"internalType":"address","name":"vaultFactory","type":"address"},{"internalType":"address","name":"networkMiddlewareService","type":"address"},{"internalType":"address","name":"networkRegistry","type":"address"},{"internalType":"address","name":"slasherFactory","type":"address"},{"internalType":"uint64","name":"entityType","type":"uint64"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AlreadySet","type":"error"},{"inputs":[],"name":"CheckpointUnorderedInsertion","type":"error"},{"inputs":[],"name":"InsufficientBurnerGas","type":"error"},{"inputs":[],"name":"InsufficientSlash","type":"error"},{"inputs":[],"name":"InvalidCaptureTimestamp","type":"error"},{"inputs":[],"name":"InvalidInitialization","type":"error"},{"inputs":[],"name":"InvalidResolverSetEpochsDelay","type":"error"},{"inputs":[],"name":"InvalidVetoDuration","type":"error"},{"inputs":[],"name":"NoBurner","type":"error"},{"inputs":[],"name":"NoResolver","type":"error"},{"inputs":[],"name":"NotInitialized","type":"error"},{"inputs":[],"name":"NotInitializing","type":"error"},{"inputs":[],"name":"NotNetwork","type":"error"},{"inputs":[],"name":"NotNetworkMiddleware","type":"error"},{"inputs":[],"name":"NotResolver","type":"error"},{"inputs":[],"name":"NotVault","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[{"internalType":"uint8","name":"bits","type":"uint8"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"SafeCastOverflowedUintDowncast","type":"error"},{"inputs":[],"name":"SlashPeriodEnded","type":"error"},{"inputs":[],"name":"SlashRequestCompleted","type":"error"},{"inputs":[],"name":"SlashRequestNotExist","type":"error"},{"inputs":[],"name":"VetoPeriodEnded","type":"error"},{"inputs":[],"name":"VetoPeriodNotEnded","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"slashIndex","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"slashedAmount","type":"uint256"}],"name":"ExecuteSlash","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint64","name":"version","type":"uint64"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"slashIndex","type":"uint256"},{"indexed":true,"internalType":"bytes32","name":"subnetwork","type":"bytes32"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"uint256","name":"slashAmount","type":"uint256"},{"indexed":false,"internalType":"uint48","name":"captureTimestamp","type":"uint48"},{"indexed":false,"internalType":"uint48","name":"vetoDeadline","type":"uint48"}],"name":"RequestSlash","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"subnetwork","type":"bytes32"},{"indexed":false,"internalType":"address","name":"resolver","type":"address"}],"name":"SetResolver","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"slashIndex","type":"uint256"},{"indexed":true,"internalType":"address","name":"resolver","type":"address"}],"name":"VetoSlash","type":"event"},{"inputs":[],"name":"BURNER_GAS_LIMIT","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"BURNER_RESERVE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"FACTORY","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"NETWORK_MIDDLEWARE_SERVICE","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"NETWORK_REGISTRY","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"TYPE","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"VAULT_FACTORY","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"subnetwork","type":"bytes32"},{"internalType":"address","name":"operator","type":"address"}],"name":"cumulativeSlash","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"subnetwork","type":"bytes32"},{"internalType":"address","name":"operator","type":"address"},{"internalType":"uint48","name":"timestamp","type":"uint48"},{"internalType":"bytes","name":"hint","type":"bytes"}],"name":"cumulativeSlashAt","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"slashIndex","type":"uint256"},{"internalType":"bytes","name":"hints","type":"bytes"}],"name":"executeSlash","outputs":[{"internalType":"uint256","name":"slashedAmount","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes","name":"data","type":"bytes"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"isBurnerHook","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"subnetwork","type":"bytes32"},{"internalType":"address","name":"operator","type":"address"}],"name":"latestSlashedCaptureTimestamp","outputs":[{"internalType":"uint48","name":"value","type":"uint48"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"subnetwork","type":"bytes32"},{"internalType":"address","name":"operator","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint48","name":"captureTimestamp","type":"uint48"},{"internalType":"bytes","name":"hints","type":"bytes"}],"name":"requestSlash","outputs":[{"internalType":"uint256","name":"slashIndex","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"subnetwork","type":"bytes32"},{"internalType":"bytes","name":"hint","type":"bytes"}],"name":"resolver","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"subnetwork","type":"bytes32"},{"internalType":"uint48","name":"timestamp","type":"uint48"},{"internalType":"bytes","name":"hint","type":"bytes"}],"name":"resolverAt","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"resolverSetEpochsDelay","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint96","name":"identifier","type":"uint96"},{"internalType":"address","name":"resolver_","type":"address"},{"internalType":"bytes","name":"hints","type":"bytes"}],"name":"setResolver","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"slashRequests","outputs":[{"internalType":"bytes32","name":"subnetwork","type":"bytes32"},{"internalType":"address","name":"operator","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint48","name":"captureTimestamp","type":"uint48"},{"internalType":"uint48","name":"vetoDeadline","type":"uint48"},{"internalType":"bool","name":"completed","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"slashRequestsLength","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"subnetwork","type":"bytes32"},{"internalType":"address","name":"operator","type":"address"},{"internalType":"uint48","name":"captureTimestamp","type":"uint48"},{"internalType":"bytes","name":"hints","type":"bytes"}],"name":"slashableStake","outputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"target","type":"address"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"staticDelegateCall","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"vault","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"vetoDuration","outputs":[{"internalType":"uint48","name":"","type":"uint48"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"slashIndex","type":"uint256"},{"internalType":"bytes","name":"hints","type":"bytes"}],"name":"vetoSlash","outputs":[],"stateMutability":"nonpayable","type":"function"}]

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.