Source Code
Overview
ETH Balance
0 ETH
More Info
ContractCreator
Multichain Info
N/A
Latest 1 internal transaction
Advanced mode:
Parent Transaction Hash | Block | From | To | |||
---|---|---|---|---|---|---|
6157623 | 168 days ago | Contract Creation | 0 ETH |
Loading...
Loading
Contract Name:
SystemConfig
Compiler Version
v0.8.15+commit.e14f2714
Optimization Enabled:
Yes with 999999 runs
Other Settings:
london EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { OwnableUpgradeable } from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol"; import { ISemver } from "src/universal/ISemver.sol"; import { ResourceMetering } from "src/L1/ResourceMetering.sol"; import { Storage } from "src/libraries/Storage.sol"; import { Constants } from "src/libraries/Constants.sol"; import { OptimismPortal } from "src/L1/OptimismPortal.sol"; import { GasPayingToken, IGasToken } from "src/libraries/GasPayingToken.sol"; import { ERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol"; /// @title SystemConfig /// @notice The SystemConfig contract is used to manage configuration of an Optimism network. /// All configuration is stored on L1 and picked up by L2 as part of the derviation of /// the L2 chain. contract SystemConfig is OwnableUpgradeable, ISemver, IGasToken { /// @notice Enum representing different types of updates. /// @custom:value BATCHER Represents an update to the batcher hash. /// @custom:value GAS_CONFIG Represents an update to txn fee config on L2. /// @custom:value GAS_LIMIT Represents an update to gas limit on L2. /// @custom:value UNSAFE_BLOCK_SIGNER Represents an update to the signer key for unsafe /// block distrubution. enum UpdateType { BATCHER, GAS_CONFIG, GAS_LIMIT, UNSAFE_BLOCK_SIGNER } /// @notice Struct representing the addresses of L1 system contracts. These should be the /// contracts that users interact with (not implementations for proxied contracts) /// and are network specific. struct Addresses { address l1CrossDomainMessenger; address l1ERC721Bridge; address l1StandardBridge; address disputeGameFactory; address optimismPortal; address optimismMintableERC20Factory; address gasPayingToken; } /// @notice Version identifier, used for upgrades. uint256 public constant VERSION = 0; /// @notice Storage slot that the unsafe block signer is stored at. /// Storing it at this deterministic storage slot allows for decoupling the storage /// layout from the way that `solc` lays out storage. The `op-node` uses a storage /// proof to fetch this value. /// @dev NOTE: this value will be migrated to another storage slot in a future version. /// User input should not be placed in storage in this contract until this migration /// happens. It is unlikely that keccak second preimage resistance will be broken, /// but it is better to be safe than sorry. bytes32 public constant UNSAFE_BLOCK_SIGNER_SLOT = keccak256("systemconfig.unsafeblocksigner"); /// @notice Storage slot that the L1CrossDomainMessenger address is stored at. bytes32 public constant L1_CROSS_DOMAIN_MESSENGER_SLOT = bytes32(uint256(keccak256("systemconfig.l1crossdomainmessenger")) - 1); /// @notice Storage slot that the L1ERC721Bridge address is stored at. bytes32 public constant L1_ERC_721_BRIDGE_SLOT = bytes32(uint256(keccak256("systemconfig.l1erc721bridge")) - 1); /// @notice Storage slot that the L1StandardBridge address is stored at. bytes32 public constant L1_STANDARD_BRIDGE_SLOT = bytes32(uint256(keccak256("systemconfig.l1standardbridge")) - 1); /// @notice Storage slot that the OptimismPortal address is stored at. bytes32 public constant OPTIMISM_PORTAL_SLOT = bytes32(uint256(keccak256("systemconfig.optimismportal")) - 1); /// @notice Storage slot that the OptimismMintableERC20Factory address is stored at. bytes32 public constant OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT = bytes32(uint256(keccak256("systemconfig.optimismmintableerc20factory")) - 1); /// @notice Storage slot that the batch inbox address is stored at. bytes32 public constant BATCH_INBOX_SLOT = bytes32(uint256(keccak256("systemconfig.batchinbox")) - 1); /// @notice Storage slot for block at which the op-node can start searching for logs from. bytes32 public constant START_BLOCK_SLOT = bytes32(uint256(keccak256("systemconfig.startBlock")) - 1); /// @notice Storage slot for the DisputeGameFactory address. bytes32 public constant DISPUTE_GAME_FACTORY_SLOT = bytes32(uint256(keccak256("systemconfig.disputegamefactory")) - 1); /// @notice The number of decimals that the gas paying token has. uint8 internal constant GAS_PAYING_TOKEN_DECIMALS = 18; /// @notice The maximum gas limit that can be set for L2 blocks. This limit is used to enforce that the blocks /// on L2 are not too large to process and prove. Over time, this value can be increased as various /// optimizations and improvements are made to the system at large. uint64 internal constant MAX_GAS_LIMIT = 200_000_000; /// @notice Fixed L2 gas overhead. Used as part of the L2 fee calculation. /// Deprecated since the Ecotone network upgrade uint256 public overhead; /// @notice Dynamic L2 gas overhead. Used as part of the L2 fee calculation. /// The most significant byte is used to determine the version since the /// Ecotone network upgrade. uint256 public scalar; /// @notice Identifier for the batcher. /// For version 1 of this configuration, this is represented as an address left-padded /// with zeros to 32 bytes. bytes32 public batcherHash; /// @notice L2 block gas limit. uint64 public gasLimit; /// @notice Basefee scalar value. Part of the L2 fee calculation since the Ecotone network upgrade. uint32 public basefeeScalar; /// @notice Blobbasefee scalar value. Part of the L2 fee calculation since the Ecotone network upgrade. uint32 public blobbasefeeScalar; /// @notice The configuration for the deposit fee market. /// Used by the OptimismPortal to meter the cost of buying L2 gas on L1. /// Set as internal with a getter so that the struct is returned instead of a tuple. ResourceMetering.ResourceConfig internal _resourceConfig; /// @notice Emitted when configuration is updated. /// @param version SystemConfig version. /// @param updateType Type of update. /// @param data Encoded update data. event ConfigUpdate(uint256 indexed version, UpdateType indexed updateType, bytes data); /// @notice Semantic version. /// @custom:semver 2.3.0-beta.1 string public constant version = "2.3.0-beta.1"; /// @notice Constructs the SystemConfig contract. Cannot set /// the owner to `address(0)` due to the Ownable contract's /// implementation, so set it to `address(0xdEaD)` /// @dev START_BLOCK_SLOT is set to type(uint256).max here so that it will be a dead value /// in the singleton and is skipped by initialize when setting the start block. constructor() { Storage.setUint(START_BLOCK_SLOT, type(uint256).max); initialize({ _owner: address(0xdEaD), _basefeeScalar: 0, _blobbasefeeScalar: 0, _batcherHash: bytes32(0), _gasLimit: 1, _unsafeBlockSigner: address(0), _config: ResourceMetering.ResourceConfig({ maxResourceLimit: 1, elasticityMultiplier: 1, baseFeeMaxChangeDenominator: 2, minimumBaseFee: 0, systemTxMaxGas: 0, maximumBaseFee: 0 }), _batchInbox: address(0), _addresses: SystemConfig.Addresses({ l1CrossDomainMessenger: address(0), l1ERC721Bridge: address(0), l1StandardBridge: address(0), disputeGameFactory: address(0), optimismPortal: address(0), optimismMintableERC20Factory: address(0), gasPayingToken: address(0) }) }); } /// @notice Initializer. /// The resource config must be set before the require check. /// @param _owner Initial owner of the contract. /// @param _basefeeScalar Initial basefee scalar value. /// @param _blobbasefeeScalar Initial blobbasefee scalar value. /// @param _batcherHash Initial batcher hash. /// @param _gasLimit Initial gas limit. /// @param _unsafeBlockSigner Initial unsafe block signer address. /// @param _config Initial ResourceConfig. /// @param _batchInbox Batch inbox address. An identifier for the op-node to find /// canonical data. /// @param _addresses Set of L1 contract addresses. These should be the proxies. function initialize( address _owner, uint32 _basefeeScalar, uint32 _blobbasefeeScalar, bytes32 _batcherHash, uint64 _gasLimit, address _unsafeBlockSigner, ResourceMetering.ResourceConfig memory _config, address _batchInbox, SystemConfig.Addresses memory _addresses ) public initializer { __Ownable_init(); transferOwnership(_owner); // These are set in ascending order of their UpdateTypes. _setBatcherHash(_batcherHash); _setGasConfigEcotone({ _basefeeScalar: _basefeeScalar, _blobbasefeeScalar: _blobbasefeeScalar }); _setGasLimit(_gasLimit); Storage.setAddress(UNSAFE_BLOCK_SIGNER_SLOT, _unsafeBlockSigner); Storage.setAddress(BATCH_INBOX_SLOT, _batchInbox); Storage.setAddress(L1_CROSS_DOMAIN_MESSENGER_SLOT, _addresses.l1CrossDomainMessenger); Storage.setAddress(L1_ERC_721_BRIDGE_SLOT, _addresses.l1ERC721Bridge); Storage.setAddress(L1_STANDARD_BRIDGE_SLOT, _addresses.l1StandardBridge); Storage.setAddress(DISPUTE_GAME_FACTORY_SLOT, _addresses.disputeGameFactory); Storage.setAddress(OPTIMISM_PORTAL_SLOT, _addresses.optimismPortal); Storage.setAddress(OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT, _addresses.optimismMintableERC20Factory); _setStartBlock(); _setGasPayingToken(_addresses.gasPayingToken); _setResourceConfig(_config); require(_gasLimit >= minimumGasLimit(), "SystemConfig: gas limit too low"); } /// @notice Returns the minimum L2 gas limit that can be safely set for the system to /// operate. The L2 gas limit must be larger than or equal to the amount of /// gas that is allocated for deposits per block plus the amount of gas that /// is allocated for the system transaction. /// This function is used to determine if changes to parameters are safe. /// @return uint64 Minimum gas limit. function minimumGasLimit() public view returns (uint64) { return uint64(_resourceConfig.maxResourceLimit) + uint64(_resourceConfig.systemTxMaxGas); } /// @notice Returns the maximum L2 gas limit that can be safely set for the system to /// operate. This bound is used to prevent the gas limit from being set too high /// and causing the system to be unable to process and/or prove L2 blocks. /// @return uint64 Maximum gas limit. function maximumGasLimit() public pure returns (uint64) { return MAX_GAS_LIMIT; } /// @notice High level getter for the unsafe block signer address. /// Unsafe blocks can be propagated across the p2p network if they are signed by the /// key corresponding to this address. /// @return addr_ Address of the unsafe block signer. function unsafeBlockSigner() public view returns (address addr_) { addr_ = Storage.getAddress(UNSAFE_BLOCK_SIGNER_SLOT); } /// @notice Getter for the L1CrossDomainMessenger address. function l1CrossDomainMessenger() external view returns (address addr_) { addr_ = Storage.getAddress(L1_CROSS_DOMAIN_MESSENGER_SLOT); } /// @notice Getter for the L1ERC721Bridge address. function l1ERC721Bridge() external view returns (address addr_) { addr_ = Storage.getAddress(L1_ERC_721_BRIDGE_SLOT); } /// @notice Getter for the L1StandardBridge address. function l1StandardBridge() external view returns (address addr_) { addr_ = Storage.getAddress(L1_STANDARD_BRIDGE_SLOT); } /// @notice Getter for the DisputeGameFactory address. function disputeGameFactory() external view returns (address addr_) { addr_ = Storage.getAddress(DISPUTE_GAME_FACTORY_SLOT); } /// @notice Getter for the OptimismPortal address. function optimismPortal() public view returns (address addr_) { addr_ = Storage.getAddress(OPTIMISM_PORTAL_SLOT); } /// @notice Getter for the OptimismMintableERC20Factory address. function optimismMintableERC20Factory() external view returns (address addr_) { addr_ = Storage.getAddress(OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT); } /// @notice Getter for the BatchInbox address. function batchInbox() external view returns (address addr_) { addr_ = Storage.getAddress(BATCH_INBOX_SLOT); } /// @notice Getter for the StartBlock number. function startBlock() external view returns (uint256 startBlock_) { startBlock_ = Storage.getUint(START_BLOCK_SLOT); } /// @notice Getter for the gas paying asset address. function gasPayingToken() public view returns (address addr_, uint8 decimals_) { (addr_, decimals_) = GasPayingToken.getToken(); } /// @notice Getter for custom gas token paying networks. Returns true if the /// network uses a custom gas token. function isCustomGasToken() public view returns (bool) { (address token,) = gasPayingToken(); return token != Constants.ETHER; } /// @notice Getter for the gas paying token name. function gasPayingTokenName() external view returns (string memory name_) { name_ = GasPayingToken.getName(); } /// @notice Getter for the gas paying token symbol. function gasPayingTokenSymbol() external view returns (string memory symbol_) { symbol_ = GasPayingToken.getSymbol(); } /// @notice Internal setter for the gas paying token address, includes validation. /// The token must not already be set and must be non zero and not the ether address /// to set the token address. This prevents the token address from being changed /// and makes it explicitly opt-in to use custom gas token. /// @param _token Address of the gas paying token. function _setGasPayingToken(address _token) internal { if (_token != address(0) && _token != Constants.ETHER && !isCustomGasToken()) { require( ERC20(_token).decimals() == GAS_PAYING_TOKEN_DECIMALS, "SystemConfig: bad decimals of gas paying token" ); bytes32 name = GasPayingToken.sanitize(ERC20(_token).name()); bytes32 symbol = GasPayingToken.sanitize(ERC20(_token).symbol()); // Set the gas paying token in storage and in the OptimismPortal. GasPayingToken.set({ _token: _token, _decimals: GAS_PAYING_TOKEN_DECIMALS, _name: name, _symbol: symbol }); OptimismPortal(payable(optimismPortal())).setGasPayingToken({ _token: _token, _decimals: GAS_PAYING_TOKEN_DECIMALS, _name: name, _symbol: symbol }); } } /// @notice Updates the unsafe block signer address. Can only be called by the owner. /// @param _unsafeBlockSigner New unsafe block signer address. function setUnsafeBlockSigner(address _unsafeBlockSigner) external onlyOwner { _setUnsafeBlockSigner(_unsafeBlockSigner); } /// @notice Updates the unsafe block signer address. /// @param _unsafeBlockSigner New unsafe block signer address. function _setUnsafeBlockSigner(address _unsafeBlockSigner) internal { Storage.setAddress(UNSAFE_BLOCK_SIGNER_SLOT, _unsafeBlockSigner); bytes memory data = abi.encode(_unsafeBlockSigner); emit ConfigUpdate(VERSION, UpdateType.UNSAFE_BLOCK_SIGNER, data); } /// @notice Updates the batcher hash. Can only be called by the owner. /// @param _batcherHash New batcher hash. function setBatcherHash(bytes32 _batcherHash) external onlyOwner { _setBatcherHash(_batcherHash); } /// @notice Internal function for updating the batcher hash. /// @param _batcherHash New batcher hash. function _setBatcherHash(bytes32 _batcherHash) internal { batcherHash = _batcherHash; bytes memory data = abi.encode(_batcherHash); emit ConfigUpdate(VERSION, UpdateType.BATCHER, data); } /// @notice Updates gas config. Can only be called by the owner. /// Deprecated in favor of setGasConfigEcotone since the Ecotone upgrade. /// @param _overhead New overhead value. /// @param _scalar New scalar value. function setGasConfig(uint256 _overhead, uint256 _scalar) external onlyOwner { _setGasConfig(_overhead, _scalar); } /// @notice Internal function for updating the gas config. /// @param _overhead New overhead value. /// @param _scalar New scalar value. function _setGasConfig(uint256 _overhead, uint256 _scalar) internal { require((uint256(0xff) << 248) & _scalar == 0, "SystemConfig: scalar exceeds max."); overhead = _overhead; scalar = _scalar; bytes memory data = abi.encode(_overhead, _scalar); emit ConfigUpdate(VERSION, UpdateType.GAS_CONFIG, data); } /// @notice Updates gas config as of the Ecotone upgrade. Can only be called by the owner. /// @param _basefeeScalar New basefeeScalar value. /// @param _blobbasefeeScalar New blobbasefeeScalar value. function setGasConfigEcotone(uint32 _basefeeScalar, uint32 _blobbasefeeScalar) external onlyOwner { _setGasConfigEcotone(_basefeeScalar, _blobbasefeeScalar); } /// @notice Internal function for updating the fee scalars as of the Ecotone upgrade. /// @param _basefeeScalar New basefeeScalar value. /// @param _blobbasefeeScalar New blobbasefeeScalar value. function _setGasConfigEcotone(uint32 _basefeeScalar, uint32 _blobbasefeeScalar) internal { basefeeScalar = _basefeeScalar; blobbasefeeScalar = _blobbasefeeScalar; scalar = (uint256(0x01) << 248) | (uint256(_blobbasefeeScalar) << 32) | _basefeeScalar; bytes memory data = abi.encode(overhead, scalar); emit ConfigUpdate(VERSION, UpdateType.GAS_CONFIG, data); } /// @notice Updates the L2 gas limit. Can only be called by the owner. /// @param _gasLimit New gas limit. function setGasLimit(uint64 _gasLimit) external onlyOwner { _setGasLimit(_gasLimit); } /// @notice Internal function for updating the L2 gas limit. /// @param _gasLimit New gas limit. function _setGasLimit(uint64 _gasLimit) internal { require(_gasLimit >= minimumGasLimit(), "SystemConfig: gas limit too low"); require(_gasLimit <= maximumGasLimit(), "SystemConfig: gas limit too high"); gasLimit = _gasLimit; bytes memory data = abi.encode(_gasLimit); emit ConfigUpdate(VERSION, UpdateType.GAS_LIMIT, data); } /// @notice Sets the start block in a backwards compatible way. Proxies /// that were initialized before the startBlock existed in storage /// can have their start block set by a user provided override. /// A start block of 0 indicates that there is no override and the /// start block will be set by `block.number`. /// @dev This logic is used to patch legacy deployments with new storage values. /// Use the override if it is provided as a non zero value and the value /// has not already been set in storage. Use `block.number` if the value /// has already been set in storage function _setStartBlock() internal { if (Storage.getUint(START_BLOCK_SLOT) == 0) { Storage.setUint(START_BLOCK_SLOT, block.number); } } /// @notice A getter for the resource config. /// Ensures that the struct is returned instead of a tuple. /// @return ResourceConfig function resourceConfig() external view returns (ResourceMetering.ResourceConfig memory) { return _resourceConfig; } /// @notice An internal setter for the resource config. /// Ensures that the config is sane before storing it by checking for invariants. /// In the future, this method may emit an event that the `op-node` picks up /// for when the resource config is changed. /// @param _config The new resource config. function _setResourceConfig(ResourceMetering.ResourceConfig memory _config) internal { // Min base fee must be less than or equal to max base fee. require( _config.minimumBaseFee <= _config.maximumBaseFee, "SystemConfig: min base fee must be less than max base" ); // Base fee change denominator must be greater than 1. require(_config.baseFeeMaxChangeDenominator > 1, "SystemConfig: denominator must be larger than 1"); // Max resource limit plus system tx gas must be less than or equal to the L2 gas limit. // The gas limit must be increased before these values can be increased. require(_config.maxResourceLimit + _config.systemTxMaxGas <= gasLimit, "SystemConfig: gas limit too low"); // Elasticity multiplier must be greater than 0. require(_config.elasticityMultiplier > 0, "SystemConfig: elasticity multiplier cannot be 0"); // No precision loss when computing target resource limit. require( ((_config.maxResourceLimit / _config.elasticityMultiplier) * _config.elasticityMultiplier) == _config.maxResourceLimit, "SystemConfig: precision loss with target resource limit" ); _resourceConfig = _config; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/ContextUpgradeable.sol"; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ function __Ownable_init() internal onlyInitializing { __Ownable_init_unchained(); } function __Ownable_init_unchained() internal onlyInitializing { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @title ISemver /// @notice ISemver is a simple contract for ensuring that contracts are /// versioned using semantic versioning. interface ISemver { /// @notice Getter for the semantic version of the contract. This is not /// meant to be used onchain but instead meant to be used by offchain /// tooling. /// @return Semver contract version as a string. function version() external view returns (string memory); }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol"; import { Math } from "@openzeppelin/contracts/utils/math/Math.sol"; import { Burn } from "src/libraries/Burn.sol"; import { Arithmetic } from "src/libraries/Arithmetic.sol"; /// @custom:upgradeable /// @title ResourceMetering /// @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing /// updates automatically based on current demand. abstract contract ResourceMetering is Initializable { /// @notice Error returned when too much gas resource is consumed. error OutOfGas(); /// @notice Represents the various parameters that control the way in which resources are /// metered. Corresponds to the EIP-1559 resource metering system. /// @custom:field prevBaseFee Base fee from the previous block(s). /// @custom:field prevBoughtGas Amount of gas bought so far in the current block. /// @custom:field prevBlockNum Last block number that the base fee was updated. struct ResourceParams { uint128 prevBaseFee; uint64 prevBoughtGas; uint64 prevBlockNum; } /// @notice Represents the configuration for the EIP-1559 based curve for the deposit gas /// market. These values should be set with care as it is possible to set them in /// a way that breaks the deposit gas market. The target resource limit is defined as /// maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a /// single word. There is additional space for additions in the future. /// @custom:field maxResourceLimit Represents the maximum amount of deposit gas that /// can be purchased per block. /// @custom:field elasticityMultiplier Determines the target resource limit along with /// the resource limit. /// @custom:field baseFeeMaxChangeDenominator Determines max change on fee per block. /// @custom:field minimumBaseFee The min deposit base fee, it is clamped to this /// value. /// @custom:field systemTxMaxGas The amount of gas supplied to the system /// transaction. This should be set to the same /// number that the op-node sets as the gas limit /// for the system transaction. /// @custom:field maximumBaseFee The max deposit base fee, it is clamped to this /// value. struct ResourceConfig { uint32 maxResourceLimit; uint8 elasticityMultiplier; uint8 baseFeeMaxChangeDenominator; uint32 minimumBaseFee; uint32 systemTxMaxGas; uint128 maximumBaseFee; } /// @notice EIP-1559 style gas parameters. ResourceParams public params; /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades. uint256[48] private __gap; /// @notice Meters access to a function based an amount of a requested resource. /// @param _amount Amount of the resource requested. modifier metered(uint64 _amount) { // Record initial gas amount so we can refund for it later. uint256 initialGas = gasleft(); // Run the underlying function. _; // Run the metering function. _metered(_amount, initialGas); } /// @notice An internal function that holds all of the logic for metering a resource. /// @param _amount Amount of the resource requested. /// @param _initialGas The amount of gas before any modifier execution. function _metered(uint64 _amount, uint256 _initialGas) internal { // Update block number and base fee if necessary. uint256 blockDiff = block.number - params.prevBlockNum; ResourceConfig memory config = _resourceConfig(); int256 targetResourceLimit = int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier)); if (blockDiff > 0) { // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate // at which deposits can be created and therefore limit the potential for deposits to // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes. int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit; int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta) / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator))); // Update base fee by adding the base fee delta and clamp the resulting value between // min and max. int256 newBaseFee = Arithmetic.clamp({ _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta, _min: int256(uint256(config.minimumBaseFee)), _max: int256(uint256(config.maximumBaseFee)) }); // If we skipped more than one block, we also need to account for every empty block. // Empty block means there was no demand for deposits in that block, so we should // reflect this lack of demand in the fee. if (blockDiff > 1) { // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator) // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value // between min and max. newBaseFee = Arithmetic.clamp({ _value: Arithmetic.cdexp({ _coefficient: newBaseFee, _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)), _exponent: int256(blockDiff - 1) }), _min: int256(uint256(config.minimumBaseFee)), _max: int256(uint256(config.maximumBaseFee)) }); } // Update new base fee, reset bought gas, and update block number. params.prevBaseFee = uint128(uint256(newBaseFee)); params.prevBoughtGas = 0; params.prevBlockNum = uint64(block.number); } // Make sure we can actually buy the resource amount requested by the user. params.prevBoughtGas += _amount; if (int256(uint256(params.prevBoughtGas)) > int256(uint256(config.maxResourceLimit))) { revert OutOfGas(); } // Determine the amount of ETH to be paid. uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee); // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei // during any 1 day period in the last 5 years, so should be fine. uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei); // Give the user a refund based on the amount of gas they used to do all of the work up to // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts // effectively like a dynamic stipend (with a minimum value). uint256 usedGas = _initialGas - gasleft(); if (gasCost > usedGas) { Burn.gas(gasCost - usedGas); } } /// @notice Adds an amount of L2 gas consumed to the prev bought gas params. This is meant to be used /// when L2 system transactions are generated from L1. /// @param _amount Amount of the L2 gas resource requested. function useGas(uint32 _amount) internal { params.prevBoughtGas += uint64(_amount); } /// @notice Virtual function that returns the resource config. /// Contracts that inherit this contract must implement this function. /// @return ResourceConfig function _resourceConfig() internal virtual returns (ResourceConfig memory); /// @notice Sets initial resource parameter values. /// This function must either be called by the initializer function of an upgradeable /// child contract. function __ResourceMetering_init() internal onlyInitializing { if (params.prevBlockNum == 0) { params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) }); } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @title Storage /// @notice Storage handles reading and writing to arbitary storage locations library Storage { /// @notice Returns an address stored in an arbitrary storage slot. /// These storage slots decouple the storage layout from /// solc's automation. /// @param _slot The storage slot to retrieve the address from. function getAddress(bytes32 _slot) internal view returns (address addr_) { assembly { addr_ := sload(_slot) } } /// @notice Stores an address in an arbitrary storage slot, `_slot`. /// @param _slot The storage slot to store the address in. /// @param _address The protocol version to store /// @dev WARNING! This function must be used cautiously, as it allows for overwriting addresses /// in arbitrary storage slots. function setAddress(bytes32 _slot, address _address) internal { assembly { sstore(_slot, _address) } } /// @notice Returns a uint256 stored in an arbitrary storage slot. /// These storage slots decouple the storage layout from /// solc's automation. /// @param _slot The storage slot to retrieve the address from. function getUint(bytes32 _slot) internal view returns (uint256 value_) { assembly { value_ := sload(_slot) } } /// @notice Stores a value in an arbitrary storage slot, `_slot`. /// @param _slot The storage slot to store the address in. /// @param _value The protocol version to store /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values /// in arbitrary storage slots. function setUint(bytes32 _slot, uint256 _value) internal { assembly { sstore(_slot, _value) } } /// @notice Returns a bytes32 stored in an arbitrary storage slot. /// These storage slots decouple the storage layout from /// solc's automation. /// @param _slot The storage slot to retrieve the address from. function getBytes32(bytes32 _slot) internal view returns (bytes32 value_) { assembly { value_ := sload(_slot) } } /// @notice Stores a bytes32 value in an arbitrary storage slot, `_slot`. /// @param _slot The storage slot to store the address in. /// @param _value The bytes32 value to store. /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values /// in arbitrary storage slots. function setBytes32(bytes32 _slot, bytes32 _value) internal { assembly { sstore(_slot, _value) } } /// @notice Stores a bool value in an arbitrary storage slot, `_slot`. /// @param _slot The storage slot to store the bool in. /// @param _value The bool value to store /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values /// in arbitrary storage slots. function setBool(bytes32 _slot, bool _value) internal { assembly { sstore(_slot, _value) } } /// @notice Returns a bool stored in an arbitrary storage slot. /// @param _slot The storage slot to retrieve the bool from. function getBool(bytes32 _slot) internal view returns (bool value_) { assembly { value_ := sload(_slot) } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { ResourceMetering } from "src/L1/ResourceMetering.sol"; /// @title Constants /// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just /// the stuff used in multiple contracts. Constants that only apply to a single contract /// should be defined in that contract instead. library Constants { /// @notice Special address to be used as the tx origin for gas estimation calls in the /// OptimismPortal and CrossDomainMessenger calls. You only need to use this address if /// the minimum gas limit specified by the user is not actually enough to execute the /// given message and you're attempting to estimate the actual necessary gas limit. We /// use address(1) because it's the ecrecover precompile and therefore guaranteed to /// never have any code on any EVM chain. address internal constant ESTIMATION_ADDRESS = address(1); /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the /// CrossDomainMessenger contracts before an actual sender is set. This value is /// non-zero to reduce the gas cost of message passing transactions. address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD; /// @notice The storage slot that holds the address of a proxy implementation. /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)` bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /// @notice The storage slot that holds the address of the owner. /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)` bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /// @notice The address that represents ether when dealing with ERC20 token addresses. address internal constant ETHER = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE; /// @notice The address that represents the system caller responsible for L1 attributes /// transactions. address internal constant DEPOSITOR_ACCOUNT = 0xDeaDDEaDDeAdDeAdDEAdDEaddeAddEAdDEAd0001; /// @notice Returns the default values for the ResourceConfig. These are the recommended values /// for a production network. function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) { ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({ maxResourceLimit: 20_000_000, elasticityMultiplier: 10, baseFeeMaxChangeDenominator: 8, minimumBaseFee: 1 gwei, systemTxMaxGas: 1_000_000, maximumBaseFee: type(uint128).max }); return config; } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol"; import { SafeCall } from "src/libraries/SafeCall.sol"; import { L2OutputOracle } from "src/L1/L2OutputOracle.sol"; import { SystemConfig } from "src/L1/SystemConfig.sol"; import { SuperchainConfig } from "src/L1/SuperchainConfig.sol"; import { Constants } from "src/libraries/Constants.sol"; import { Types } from "src/libraries/Types.sol"; import { Hashing } from "src/libraries/Hashing.sol"; import { SecureMerkleTrie } from "src/libraries/trie/SecureMerkleTrie.sol"; import { AddressAliasHelper } from "src/vendor/AddressAliasHelper.sol"; import { ResourceMetering } from "src/L1/ResourceMetering.sol"; import { ISemver } from "src/universal/ISemver.sol"; import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import { L1Block } from "src/L2/L1Block.sol"; import { Predeploys } from "src/libraries/Predeploys.sol"; import "src/libraries/PortalErrors.sol"; /// @custom:proxied /// @title OptimismPortal /// @notice The OptimismPortal is a low-level contract responsible for passing messages between L1 /// and L2. Messages sent directly to the OptimismPortal have no form of replayability. /// Users are encouraged to use the L1CrossDomainMessenger for a higher-level interface. contract OptimismPortal is Initializable, ResourceMetering, ISemver { /// @notice Allows for interactions with non standard ERC20 tokens. using SafeERC20 for IERC20; /// @notice Represents a proven withdrawal. /// @custom:field outputRoot Root of the L2 output this was proven against. /// @custom:field timestamp Timestamp at whcih the withdrawal was proven. /// @custom:field l2OutputIndex Index of the output this was proven against. struct ProvenWithdrawal { bytes32 outputRoot; uint128 timestamp; uint128 l2OutputIndex; } /// @notice Version of the deposit event. uint256 internal constant DEPOSIT_VERSION = 0; /// @notice The L2 gas limit set when eth is deposited using the receive() function. uint64 internal constant RECEIVE_DEFAULT_GAS_LIMIT = 100_000; /// @notice The L2 gas limit for system deposit transactions that are initiated from L1. uint32 internal constant SYSTEM_DEPOSIT_GAS_LIMIT = 200_000; /// @notice Address of the L2 account which initiated a withdrawal in this transaction. /// If the of this variable is the default L2 sender address, then we are NOT inside of /// a call to finalizeWithdrawalTransaction. address public l2Sender; /// @notice A list of withdrawal hashes which have been successfully finalized. mapping(bytes32 => bool) public finalizedWithdrawals; /// @notice A mapping of withdrawal hashes to `ProvenWithdrawal` data. mapping(bytes32 => ProvenWithdrawal) public provenWithdrawals; /// @custom:legacy /// @custom:spacer paused /// @notice Spacer for backwards compatibility. bool private spacer_53_0_1; /// @notice Contract of the Superchain Config. SuperchainConfig public superchainConfig; /// @notice Contract of the L2OutputOracle. /// @custom:network-specific L2OutputOracle public l2Oracle; /// @notice Contract of the SystemConfig. /// @custom:network-specific SystemConfig public systemConfig; /// @custom:spacer disputeGameFactory /// @notice Spacer for backwards compatibility. address private spacer_56_0_20; /// @custom:spacer provenWithdrawals /// @notice Spacer for backwards compatibility. bytes32 private spacer_57_0_32; /// @custom:spacer disputeGameBlacklist /// @notice Spacer for backwards compatibility. bytes32 private spacer_58_0_32; /// @custom:spacer respectedGameType + respectedGameTypeUpdatedAt /// @notice Spacer for backwards compatibility. bytes32 private spacer_59_0_32; /// @custom:spacer proofSubmitters /// @notice Spacer for backwards compatibility. bytes32 private spacer_60_0_32; /// @notice Represents the amount of native asset minted in L2. This may not /// be 100% accurate due to the ability to send ether to the contract /// without triggering a deposit transaction. It also is used to prevent /// overflows for L2 account balances when custom gas tokens are used. /// It is not safe to trust `ERC20.balanceOf` as it may lie. uint256 internal _balance; /// @notice Emitted when a transaction is deposited from L1 to L2. /// The parameters of this event are read by the rollup node and used to derive deposit /// transactions on L2. /// @param from Address that triggered the deposit transaction. /// @param to Address that the deposit transaction is directed to. /// @param version Version of this deposit transaction event. /// @param opaqueData ABI encoded deposit data to be parsed off-chain. event TransactionDeposited(address indexed from, address indexed to, uint256 indexed version, bytes opaqueData); /// @notice Emitted when a withdrawal transaction is proven. /// @param withdrawalHash Hash of the withdrawal transaction. /// @param from Address that triggered the withdrawal transaction. /// @param to Address that the withdrawal transaction is directed to. event WithdrawalProven(bytes32 indexed withdrawalHash, address indexed from, address indexed to); /// @notice Emitted when a withdrawal transaction is finalized. /// @param withdrawalHash Hash of the withdrawal transaction. /// @param success Whether the withdrawal transaction was successful. event WithdrawalFinalized(bytes32 indexed withdrawalHash, bool success); /// @notice Reverts when paused. modifier whenNotPaused() { if (paused()) revert CallPaused(); _; } /// @notice Semantic version. /// @custom:semver 2.8.0 string public constant version = "2.8.0"; /// @notice Constructs the OptimismPortal contract. constructor() { initialize({ _l2Oracle: L2OutputOracle(address(0)), _systemConfig: SystemConfig(address(0)), _superchainConfig: SuperchainConfig(address(0)) }); } /// @notice Initializer. /// @param _l2Oracle Contract of the L2OutputOracle. /// @param _systemConfig Contract of the SystemConfig. /// @param _superchainConfig Contract of the SuperchainConfig. function initialize( L2OutputOracle _l2Oracle, SystemConfig _systemConfig, SuperchainConfig _superchainConfig ) public initializer { l2Oracle = _l2Oracle; systemConfig = _systemConfig; superchainConfig = _superchainConfig; if (l2Sender == address(0)) { l2Sender = Constants.DEFAULT_L2_SENDER; } __ResourceMetering_init(); } /// @notice Getter for the balance of the contract. function balance() public view returns (uint256) { (address token,) = gasPayingToken(); if (token == Constants.ETHER) { return address(this).balance; } else { return _balance; } } /// @notice Getter function for the address of the guardian. /// Public getter is legacy and will be removed in the future. Use `SuperchainConfig.guardian()` instead. /// @return Address of the guardian. /// @custom:legacy function guardian() public view returns (address) { return superchainConfig.guardian(); } /// @notice Getter for the current paused status. /// @return paused_ Whether or not the contract is paused. function paused() public view returns (bool paused_) { paused_ = superchainConfig.paused(); } /// @notice Computes the minimum gas limit for a deposit. /// The minimum gas limit linearly increases based on the size of the calldata. /// This is to prevent users from creating L2 resource usage without paying for it. /// This function can be used when interacting with the portal to ensure forwards /// compatibility. /// @param _byteCount Number of bytes in the calldata. /// @return The minimum gas limit for a deposit. function minimumGasLimit(uint64 _byteCount) public pure returns (uint64) { return _byteCount * 16 + 21000; } /// @notice Accepts value so that users can send ETH directly to this contract and have the /// funds be deposited to their address on L2. This is intended as a convenience /// function for EOAs. Contracts should call the depositTransaction() function directly /// otherwise any deposited funds will be lost due to address aliasing. receive() external payable { depositTransaction(msg.sender, msg.value, RECEIVE_DEFAULT_GAS_LIMIT, false, bytes("")); } /// @notice Accepts ETH value without triggering a deposit to L2. /// This function mainly exists for the sake of the migration between the legacy /// Optimism system and Bedrock. function donateETH() external payable { // Intentionally empty. } /// @notice Returns the gas paying token and its decimals. function gasPayingToken() internal view returns (address addr_, uint8 decimals_) { (addr_, decimals_) = systemConfig.gasPayingToken(); } /// @notice Getter for the resource config. /// Used internally by the ResourceMetering contract. /// The SystemConfig is the source of truth for the resource config. /// @return ResourceMetering ResourceConfig function _resourceConfig() internal view override returns (ResourceMetering.ResourceConfig memory) { return systemConfig.resourceConfig(); } /// @notice Proves a withdrawal transaction. /// @param _tx Withdrawal transaction to finalize. /// @param _l2OutputIndex L2 output index to prove against. /// @param _outputRootProof Inclusion proof of the L2ToL1MessagePasser contract's storage root. /// @param _withdrawalProof Inclusion proof of the withdrawal in L2ToL1MessagePasser contract. function proveWithdrawalTransaction( Types.WithdrawalTransaction memory _tx, uint256 _l2OutputIndex, Types.OutputRootProof calldata _outputRootProof, bytes[] calldata _withdrawalProof ) external whenNotPaused { // Prevent users from creating a deposit transaction where this address is the message // sender on L2. Because this is checked here, we do not need to check again in // `finalizeWithdrawalTransaction`. if (_tx.target == address(this)) revert BadTarget(); // Get the output root and load onto the stack to prevent multiple mloads. This will // revert if there is no output root for the given block number. bytes32 outputRoot = l2Oracle.getL2Output(_l2OutputIndex).outputRoot; // Verify that the output root can be generated with the elements in the proof. require( outputRoot == Hashing.hashOutputRootProof(_outputRootProof), "OptimismPortal: invalid output root proof" ); // Load the ProvenWithdrawal into memory, using the withdrawal hash as a unique identifier. bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx); ProvenWithdrawal memory provenWithdrawal = provenWithdrawals[withdrawalHash]; // We generally want to prevent users from proving the same withdrawal multiple times // because each successive proof will update the timestamp. A malicious user can take // advantage of this to prevent other users from finalizing their withdrawal. However, // since withdrawals are proven before an output root is finalized, we need to allow users // to re-prove their withdrawal only in the case that the output root for their specified // output index has been updated. require( provenWithdrawal.timestamp == 0 || l2Oracle.getL2Output(provenWithdrawal.l2OutputIndex).outputRoot != provenWithdrawal.outputRoot, "OptimismPortal: withdrawal hash has already been proven" ); // Compute the storage slot of the withdrawal hash in the L2ToL1MessagePasser contract. // Refer to the Solidity documentation for more information on how storage layouts are // computed for mappings. bytes32 storageKey = keccak256( abi.encode( withdrawalHash, uint256(0) // The withdrawals mapping is at the first slot in the layout. ) ); // Verify that the hash of this withdrawal was stored in the L2toL1MessagePasser contract // on L2. If this is true, under the assumption that the SecureMerkleTrie does not have // bugs, then we know that this withdrawal was actually triggered on L2 and can therefore // be relayed on L1. require( SecureMerkleTrie.verifyInclusionProof({ _key: abi.encode(storageKey), _value: hex"01", _proof: _withdrawalProof, _root: _outputRootProof.messagePasserStorageRoot }), "OptimismPortal: invalid withdrawal inclusion proof" ); // Designate the withdrawalHash as proven by storing the `outputRoot`, `timestamp`, and // `l2BlockNumber` in the `provenWithdrawals` mapping. A `withdrawalHash` can only be // proven once unless it is submitted again with a different outputRoot. provenWithdrawals[withdrawalHash] = ProvenWithdrawal({ outputRoot: outputRoot, timestamp: uint128(block.timestamp), l2OutputIndex: uint128(_l2OutputIndex) }); // Emit a `WithdrawalProven` event. emit WithdrawalProven(withdrawalHash, _tx.sender, _tx.target); } /// @notice Finalizes a withdrawal transaction. /// @param _tx Withdrawal transaction to finalize. function finalizeWithdrawalTransaction(Types.WithdrawalTransaction memory _tx) external whenNotPaused { // Make sure that the l2Sender has not yet been set. The l2Sender is set to a value other // than the default value when a withdrawal transaction is being finalized. This check is // a defacto reentrancy guard. if (l2Sender != Constants.DEFAULT_L2_SENDER) revert NonReentrant(); // Grab the proven withdrawal from the `provenWithdrawals` map. bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx); ProvenWithdrawal memory provenWithdrawal = provenWithdrawals[withdrawalHash]; // A withdrawal can only be finalized if it has been proven. We know that a withdrawal has // been proven at least once when its timestamp is non-zero. Unproven withdrawals will have // a timestamp of zero. require(provenWithdrawal.timestamp != 0, "OptimismPortal: withdrawal has not been proven yet"); // As a sanity check, we make sure that the proven withdrawal's timestamp is greater than // starting timestamp inside the L2OutputOracle. Not strictly necessary but extra layer of // safety against weird bugs in the proving step. require( provenWithdrawal.timestamp >= l2Oracle.startingTimestamp(), "OptimismPortal: withdrawal timestamp less than L2 Oracle starting timestamp" ); // A proven withdrawal must wait at least the finalization period before it can be // finalized. This waiting period can elapse in parallel with the waiting period for the // output the withdrawal was proven against. In effect, this means that the minimum // withdrawal time is proposal submission time + finalization period. require( _isFinalizationPeriodElapsed(provenWithdrawal.timestamp), "OptimismPortal: proven withdrawal finalization period has not elapsed" ); // Grab the OutputProposal from the L2OutputOracle, will revert if the output that // corresponds to the given index has not been proposed yet. Types.OutputProposal memory proposal = l2Oracle.getL2Output(provenWithdrawal.l2OutputIndex); // Check that the output root that was used to prove the withdrawal is the same as the // current output root for the given output index. An output root may change if it is // deleted by the challenger address and then re-proposed. require( proposal.outputRoot == provenWithdrawal.outputRoot, "OptimismPortal: output root proven is not the same as current output root" ); // Check that the output proposal has also been finalized. require( _isFinalizationPeriodElapsed(proposal.timestamp), "OptimismPortal: output proposal finalization period has not elapsed" ); // Check that this withdrawal has not already been finalized, this is replay protection. require(finalizedWithdrawals[withdrawalHash] == false, "OptimismPortal: withdrawal has already been finalized"); // Mark the withdrawal as finalized so it can't be replayed. finalizedWithdrawals[withdrawalHash] = true; // Set the l2Sender so contracts know who triggered this withdrawal on L2. // This acts as a reentrancy guard. l2Sender = _tx.sender; bool success; (address token,) = gasPayingToken(); if (token == Constants.ETHER) { // Trigger the call to the target contract. We use a custom low level method // SafeCall.callWithMinGas to ensure two key properties // 1. Target contracts cannot force this call to run out of gas by returning a very large // amount of data (and this is OK because we don't care about the returndata here). // 2. The amount of gas provided to the execution context of the target is at least the // gas limit specified by the user. If there is not enough gas in the current context // to accomplish this, `callWithMinGas` will revert. success = SafeCall.callWithMinGas(_tx.target, _tx.gasLimit, _tx.value, _tx.data); } else { // Cannot call the token contract directly from the portal. This would allow an attacker // to call approve from a withdrawal and drain the balance of the portal. if (_tx.target == token) revert BadTarget(); // Only transfer value when a non zero value is specified. This saves gas in the case of // using the standard bridge or arbitrary message passing. if (_tx.value != 0) { // Update the contracts internal accounting of the amount of native asset in L2. _balance -= _tx.value; // Read the balance of the target contract before the transfer so the consistency // of the transfer can be checked afterwards. uint256 startBalance = IERC20(token).balanceOf(address(this)); // Transfer the ERC20 balance to the target, accounting for non standard ERC20 // implementations that may not return a boolean. This reverts if the low level // call is not successful. IERC20(token).safeTransfer({ to: _tx.target, value: _tx.value }); // The balance must be transferred exactly. if (IERC20(token).balanceOf(address(this)) != startBalance - _tx.value) { revert TransferFailed(); } } // Make a call to the target contract only if there is calldata. if (_tx.data.length != 0) { success = SafeCall.callWithMinGas(_tx.target, _tx.gasLimit, 0, _tx.data); } else { success = true; } } // Reset the l2Sender back to the default value. l2Sender = Constants.DEFAULT_L2_SENDER; // All withdrawals are immediately finalized. Replayability can // be achieved through contracts built on top of this contract emit WithdrawalFinalized(withdrawalHash, success); // Reverting here is useful for determining the exact gas cost to successfully execute the // sub call to the target contract if the minimum gas limit specified by the user would not // be sufficient to execute the sub call. if (success == false && tx.origin == Constants.ESTIMATION_ADDRESS) { revert GasEstimation(); } } /// @notice Entrypoint to depositing an ERC20 token as a custom gas token. /// This function depends on a well formed ERC20 token. There are only /// so many checks that can be done on chain for this so it is assumed /// that chain operators will deploy chains with well formed ERC20 tokens. /// @param _to Target address on L2. /// @param _mint Units of ERC20 token to deposit into L2. /// @param _value Units of ERC20 token to send on L2 to the recipient. /// @param _gasLimit Amount of L2 gas to purchase by burning gas on L1. /// @param _isCreation Whether or not the transaction is a contract creation. /// @param _data Data to trigger the recipient with. function depositERC20Transaction( address _to, uint256 _mint, uint256 _value, uint64 _gasLimit, bool _isCreation, bytes memory _data ) public metered(_gasLimit) { // Can only be called if an ERC20 token is used for gas paying on L2 (address token,) = gasPayingToken(); if (token == Constants.ETHER) revert OnlyCustomGasToken(); // Gives overflow protection for L2 account balances. _balance += _mint; // Get the balance of the portal before the transfer. uint256 startBalance = IERC20(token).balanceOf(address(this)); // Take ownership of the token. It is assumed that the user has given the portal an approval. IERC20(token).safeTransferFrom({ from: msg.sender, to: address(this), value: _mint }); // Double check that the portal now has the exact amount of token. if (IERC20(token).balanceOf(address(this)) != startBalance + _mint) { revert TransferFailed(); } _depositTransaction({ _to: _to, _mint: _mint, _value: _value, _gasLimit: _gasLimit, _isCreation: _isCreation, _data: _data }); } /// @notice Accepts deposits of ETH and data, and emits a TransactionDeposited event for use in /// deriving deposit transactions. Note that if a deposit is made by a contract, its /// address will be aliased when retrieved using `tx.origin` or `msg.sender`. Consider /// using the CrossDomainMessenger contracts for a simpler developer experience. /// @param _to Target address on L2. /// @param _value ETH value to send to the recipient. /// @param _gasLimit Amount of L2 gas to purchase by burning gas on L1. /// @param _isCreation Whether or not the transaction is a contract creation. /// @param _data Data to trigger the recipient with. function depositTransaction( address _to, uint256 _value, uint64 _gasLimit, bool _isCreation, bytes memory _data ) public payable metered(_gasLimit) { (address token,) = gasPayingToken(); if (token != Constants.ETHER && msg.value != 0) revert NoValue(); _depositTransaction({ _to: _to, _mint: msg.value, _value: _value, _gasLimit: _gasLimit, _isCreation: _isCreation, _data: _data }); } /// @notice Common logic for creating deposit transactions. /// @param _to Target address on L2. /// @param _mint Units of asset to deposit into L2. /// @param _value Units of asset to send on L2 to the recipient. /// @param _gasLimit Amount of L2 gas to purchase by burning gas on L1. /// @param _isCreation Whether or not the transaction is a contract creation. /// @param _data Data to trigger the recipient with. function _depositTransaction( address _to, uint256 _mint, uint256 _value, uint64 _gasLimit, bool _isCreation, bytes memory _data ) internal { // Just to be safe, make sure that people specify address(0) as the target when doing // contract creations. if (_isCreation && _to != address(0)) revert BadTarget(); // Prevent depositing transactions that have too small of a gas limit. Users should pay // more for more resource usage. if (_gasLimit < minimumGasLimit(uint64(_data.length))) revert SmallGasLimit(); // Prevent the creation of deposit transactions that have too much calldata. This gives an // upper limit on the size of unsafe blocks over the p2p network. 120kb is chosen to ensure // that the transaction can fit into the p2p network policy of 128kb even though deposit // transactions are not gossipped over the p2p network. if (_data.length > 120_000) revert LargeCalldata(); // Transform the from-address to its alias if the caller is a contract. address from = msg.sender; if (msg.sender != tx.origin) { from = AddressAliasHelper.applyL1ToL2Alias(msg.sender); } // Compute the opaque data that will be emitted as part of the TransactionDeposited event. // We use opaque data so that we can update the TransactionDeposited event in the future // without breaking the current interface. bytes memory opaqueData = abi.encodePacked(_mint, _value, _gasLimit, _isCreation, _data); // Emit a TransactionDeposited event so that the rollup node can derive a deposit // transaction for this deposit. emit TransactionDeposited(from, _to, DEPOSIT_VERSION, opaqueData); } /// @notice Sets the gas paying token for the L2 system. This token is used as the /// L2 native asset. Only the SystemConfig contract can call this function. function setGasPayingToken(address _token, uint8 _decimals, bytes32 _name, bytes32 _symbol) external { if (msg.sender != address(systemConfig)) revert Unauthorized(); // Set L2 deposit gas as used without paying burning gas. Ensures that deposits cannot use too much L2 gas. // This value must be large enough to cover the cost of calling `L1Block.setGasPayingToken`. useGas(SYSTEM_DEPOSIT_GAS_LIMIT); // Emit the special deposit transaction directly that sets the gas paying // token in the L1Block predeploy contract. emit TransactionDeposited( Constants.DEPOSITOR_ACCOUNT, Predeploys.L1_BLOCK_ATTRIBUTES, DEPOSIT_VERSION, abi.encodePacked( uint256(0), // mint uint256(0), // value uint64(SYSTEM_DEPOSIT_GAS_LIMIT), // gasLimit false, // isCreation, abi.encodeCall(L1Block.setGasPayingToken, (_token, _decimals, _name, _symbol)) ) ); } /// @notice Determine if a given output is finalized. /// Reverts if the call to l2Oracle.getL2Output reverts. /// Returns a boolean otherwise. /// @param _l2OutputIndex Index of the L2 output to check. /// @return Whether or not the output is finalized. function isOutputFinalized(uint256 _l2OutputIndex) external view returns (bool) { return _isFinalizationPeriodElapsed(l2Oracle.getL2Output(_l2OutputIndex).timestamp); } /// @notice Determines whether the finalization period has elapsed with respect to /// the provided block timestamp. /// @param _timestamp Timestamp to check. /// @return Whether or not the finalization period has elapsed. function _isFinalizationPeriodElapsed(uint256 _timestamp) internal view returns (bool) { return block.timestamp > _timestamp + l2Oracle.FINALIZATION_PERIOD_SECONDS(); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { Storage } from "src/libraries/Storage.sol"; import { Constants } from "src/libraries/Constants.sol"; import { LibString } from "@solady/utils/LibString.sol"; /// @title IGasToken /// @notice Implemented by contracts that are aware of the custom gas token used /// by the L2 network. interface IGasToken { /// @notice Getter for the ERC20 token address that is used to pay for gas and its decimals. function gasPayingToken() external view returns (address, uint8); /// @notice Returns the gas token name. function gasPayingTokenName() external view returns (string memory); /// @notice Returns the gas token symbol. function gasPayingTokenSymbol() external view returns (string memory); /// @notice Returns true if the network uses a custom gas token. function isCustomGasToken() external view returns (bool); } /// @title GasPayingToken /// @notice Handles reading and writing the custom gas token to storage. /// To be used in any place where gas token information is read or /// written to state. If multiple contracts use this library, the /// values in storage should be kept in sync between them. library GasPayingToken { /// @notice The storage slot that contains the address and decimals of the gas paying token bytes32 internal constant GAS_PAYING_TOKEN_SLOT = bytes32(uint256(keccak256("opstack.gaspayingtoken")) - 1); /// @notice The storage slot that contains the ERC20 `name()` of the gas paying token bytes32 internal constant GAS_PAYING_TOKEN_NAME_SLOT = bytes32(uint256(keccak256("opstack.gaspayingtokenname")) - 1); /// @notice the storage slot that contains the ERC20 `symbol()` of the gas paying token bytes32 internal constant GAS_PAYING_TOKEN_SYMBOL_SLOT = bytes32(uint256(keccak256("opstack.gaspayingtokensymbol")) - 1); /// @notice Reads the gas paying token and its decimals from the magic /// storage slot. If nothing is set in storage, then the ether /// address is returned instead. function getToken() internal view returns (address addr_, uint8 decimals_) { bytes32 slot = Storage.getBytes32(GAS_PAYING_TOKEN_SLOT); addr_ = address(uint160(uint256(slot) & uint256(type(uint160).max))); if (addr_ == address(0)) { addr_ = Constants.ETHER; decimals_ = 18; } else { decimals_ = uint8(uint256(slot) >> 160); } } /// @notice Reads the gas paying token's name from the magic storage slot. /// If nothing is set in storage, then the ether name, 'Ether', is returned instead. function getName() internal view returns (string memory name_) { (address addr,) = getToken(); if (addr == Constants.ETHER) { name_ = "Ether"; } else { name_ = LibString.fromSmallString(Storage.getBytes32(GAS_PAYING_TOKEN_NAME_SLOT)); } } /// @notice Reads the gas paying token's symbol from the magic storage slot. /// If nothing is set in storage, then the ether symbol, 'ETH', is returned instead. function getSymbol() internal view returns (string memory symbol_) { (address addr,) = getToken(); if (addr == Constants.ETHER) { symbol_ = "ETH"; } else { symbol_ = LibString.fromSmallString(Storage.getBytes32(GAS_PAYING_TOKEN_SYMBOL_SLOT)); } } /// @notice Writes the gas paying token, its decimals, name and symbol to the magic storage slot. function set(address _token, uint8 _decimals, bytes32 _name, bytes32 _symbol) internal { Storage.setBytes32(GAS_PAYING_TOKEN_SLOT, bytes32(uint256(_decimals) << 160 | uint256(uint160(_token)))); Storage.setBytes32(GAS_PAYING_TOKEN_NAME_SLOT, _name); Storage.setBytes32(GAS_PAYING_TOKEN_SYMBOL_SLOT, _symbol); } /// @notice Maps a string to a normalized null-terminated small string. function sanitize(string memory _str) internal pure returns (bytes32) { require(bytes(_str).length <= 32, "GasPayingToken: string cannot be greater than 32 bytes"); return LibString.toSmallString(_str); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.0; import "./IERC20.sol"; import "./extensions/IERC20Metadata.sol"; import "../../utils/Context.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC20 * applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20, IERC20Metadata { mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * The default value of {decimals} is 18. To select a different value for * {decimals} you should overload it. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless this function is * overridden; * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual override returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address to, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _transfer(owner, to, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _approve(owner, spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. * - the caller must have allowance for ``from``'s tokens of at least * `amount`. */ function transferFrom( address from, address to, uint256 amount ) public virtual override returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, amount); _transfer(from, to, amount); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, allowance(owner, spender) + addedValue); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { address owner = _msgSender(); uint256 currentAllowance = allowance(owner, spender); require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero"); unchecked { _approve(owner, spender, currentAllowance - subtractedValue); } return true; } /** * @dev Moves `amount` of tokens from `from` to `to`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. */ function _transfer( address from, address to, uint256 amount ) internal virtual { require(from != address(0), "ERC20: transfer from the zero address"); require(to != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(from, to, amount); uint256 fromBalance = _balances[from]; require(fromBalance >= amount, "ERC20: transfer amount exceeds balance"); unchecked { _balances[from] = fromBalance - amount; } _balances[to] += amount; emit Transfer(from, to, amount); _afterTokenTransfer(from, to, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply += amount; _balances[account] += amount; emit Transfer(address(0), account, amount); _afterTokenTransfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); uint256 accountBalance = _balances[account]; require(accountBalance >= amount, "ERC20: burn amount exceeds balance"); unchecked { _balances[account] = accountBalance - amount; } _totalSupply -= amount; emit Transfer(account, address(0), amount); _afterTokenTransfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve( address owner, address spender, uint256 amount ) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Updates `owner` s allowance for `spender` based on spent `amount`. * * Does not update the allowance amount in case of infinite allowance. * Revert if not enough allowance is available. * * Might emit an {Approval} event. */ function _spendAllowance( address owner, address spender, uint256 amount ) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { require(currentAllowance >= amount, "ERC20: insufficient allowance"); unchecked { _approve(owner, spender, currentAllowance - amount); } } } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {} /** * @dev Hook that is called after any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * has been transferred to `to`. * - when `from` is zero, `amount` tokens have been minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens have been burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _afterTokenTransfer( address from, address to, uint256 amount ) internal virtual {} }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; import "../proxy/utils/Initializable.sol"; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal onlyInitializing { } function __Context_init_unchained() internal onlyInitializing { } function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[50] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/AddressUpgradeable.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ``` * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original * initialization step. This is essential to configure modules that are added through upgrades and that require * initialization. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized < type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/Address.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ``` * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original * initialization step. This is essential to configure modules that are added through upgrades and that require * initialization. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized < type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a >= b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv( uint256 x, uint256 y, uint256 denominator, Rounding rounding ) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`. // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`. // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a // good first aproximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1; uint256 x = a; if (x >> 128 > 0) { x >>= 128; result <<= 64; } if (x >> 64 > 0) { x >>= 64; result <<= 32; } if (x >> 32 > 0) { x >>= 32; result <<= 16; } if (x >> 16 > 0) { x >>= 16; result <<= 8; } if (x >> 8 > 0) { x >>= 8; result <<= 4; } if (x >> 4 > 0) { x >>= 4; result <<= 2; } if (x >> 2 > 0) { result <<= 1; } // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { uint256 result = sqrt(a); if (rounding == Rounding.Up && result * result < a) { result += 1; } return result; } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; /// @title Burn /// @notice Utilities for burning stuff. library Burn { /// @notice Burns a given amount of ETH. /// @param _amount Amount of ETH to burn. function eth(uint256 _amount) internal { new Burner{ value: _amount }(); } /// @notice Burns a given amount of gas. /// @param _amount Amount of gas to burn. function gas(uint256 _amount) internal view { uint256 i = 0; uint256 initialGas = gasleft(); while (initialGas - gasleft() < _amount) { ++i; } } } /// @title Burner /// @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to /// the contract from the circulating supply. Self-destructing is the only way to remove ETH /// from the circulating supply. contract Burner { constructor() payable { selfdestruct(payable(address(this))); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol"; import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol"; /// @title Arithmetic /// @notice Even more math than before. library Arithmetic { /// @notice Clamps a value between a minimum and maximum. /// @param _value The value to clamp. /// @param _min The minimum value. /// @param _max The maximum value. /// @return The clamped value. function clamp(int256 _value, int256 _min, int256 _max) internal pure returns (int256) { return SignedMath.min(SignedMath.max(_value, _min), _max); } /// @notice (c)oefficient (d)enominator (exp)onentiation function. /// Returns the result of: c * (1 - 1/d)^exp. /// @param _coefficient Coefficient of the function. /// @param _denominator Fractional denominator. /// @param _exponent Power function exponent. /// @return Result of c * (1 - 1/d)^exp. function cdexp(int256 _coefficient, int256 _denominator, int256 _exponent) internal pure returns (int256) { return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18; } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; /// @title SafeCall /// @notice Perform low level safe calls library SafeCall { /// @notice Performs a low level call without copying any returndata. /// @dev Passes no calldata to the call context. /// @param _target Address to call /// @param _gas Amount of gas to pass to the call /// @param _value Amount of value to pass to the call function send(address _target, uint256 _gas, uint256 _value) internal returns (bool) { bool _success; assembly { _success := call( _gas, // gas _target, // recipient _value, // ether value 0, // inloc 0, // inlen 0, // outloc 0 // outlen ) } return _success; } /// @notice Perform a low level call without copying any returndata /// @param _target Address to call /// @param _gas Amount of gas to pass to the call /// @param _value Amount of value to pass to the call /// @param _calldata Calldata to pass to the call function call(address _target, uint256 _gas, uint256 _value, bytes memory _calldata) internal returns (bool) { bool _success; assembly { _success := call( _gas, // gas _target, // recipient _value, // ether value add(_calldata, 32), // inloc mload(_calldata), // inlen 0, // outloc 0 // outlen ) } return _success; } /// @notice Helper function to determine if there is sufficient gas remaining within the context /// to guarantee that the minimum gas requirement for a call will be met as well as /// optionally reserving a specified amount of gas for after the call has concluded. /// @param _minGas The minimum amount of gas that may be passed to the target context. /// @param _reservedGas Optional amount of gas to reserve for the caller after the execution /// of the target context. /// @return `true` if there is enough gas remaining to safely supply `_minGas` to the target /// context as well as reserve `_reservedGas` for the caller after the execution of /// the target context. /// @dev !!!!! FOOTGUN ALERT !!!!! /// 1.) The 40_000 base buffer is to account for the worst case of the dynamic cost of the /// `CALL` opcode's `address_access_cost`, `positive_value_cost`, and /// `value_to_empty_account_cost` factors with an added buffer of 5,700 gas. It is /// still possible to self-rekt by initiating a withdrawal with a minimum gas limit /// that does not account for the `memory_expansion_cost` & `code_execution_cost` /// factors of the dynamic cost of the `CALL` opcode. /// 2.) This function should *directly* precede the external call if possible. There is an /// added buffer to account for gas consumed between this check and the call, but it /// is only 5,700 gas. /// 3.) Because EIP-150 ensures that a maximum of 63/64ths of the remaining gas in the call /// frame may be passed to a subcontext, we need to ensure that the gas will not be /// truncated. /// 4.) Use wisely. This function is not a silver bullet. function hasMinGas(uint256 _minGas, uint256 _reservedGas) internal view returns (bool) { bool _hasMinGas; assembly { // Equation: gas × 63 ≥ minGas × 64 + 63(40_000 + reservedGas) _hasMinGas := iszero(lt(mul(gas(), 63), add(mul(_minGas, 64), mul(add(40000, _reservedGas), 63)))) } return _hasMinGas; } /// @notice Perform a low level call without copying any returndata. This function /// will revert if the call cannot be performed with the specified minimum /// gas. /// @param _target Address to call /// @param _minGas The minimum amount of gas that may be passed to the call /// @param _value Amount of value to pass to the call /// @param _calldata Calldata to pass to the call function callWithMinGas( address _target, uint256 _minGas, uint256 _value, bytes memory _calldata ) internal returns (bool) { bool _success; bool _hasMinGas = hasMinGas(_minGas, 0); assembly { // Assertion: gasleft() >= (_minGas * 64) / 63 + 40_000 if iszero(_hasMinGas) { // Store the "Error(string)" selector in scratch space. mstore(0, 0x08c379a0) // Store the pointer to the string length in scratch space. mstore(32, 32) // Store the string. // // SAFETY: // - We pad the beginning of the string with two zero bytes as well as the // length (24) to ensure that we override the free memory pointer at offset // 0x40. This is necessary because the free memory pointer is likely to // be greater than 1 byte when this function is called, but it is incredibly // unlikely that it will be greater than 3 bytes. As for the data within // 0x60, it is ensured that it is 0 due to 0x60 being the zero offset. // - It's fine to clobber the free memory pointer, we're reverting. mstore(88, 0x0000185361666543616c6c3a204e6f7420656e6f75676820676173) // Revert with 'Error("SafeCall: Not enough gas")' revert(28, 100) } // The call will be supplied at least ((_minGas * 64) / 63) gas due to the // above assertion. This ensures that, in all circumstances (except for when the // `_minGas` does not account for the `memory_expansion_cost` and `code_execution_cost` // factors of the dynamic cost of the `CALL` opcode), the call will receive at least // the minimum amount of gas specified. _success := call( gas(), // gas _target, // recipient _value, // ether value add(_calldata, 32), // inloc mload(_calldata), // inlen 0x00, // outloc 0x00 // outlen ) } return _success; } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol"; import { ISemver } from "src/universal/ISemver.sol"; import { Types } from "src/libraries/Types.sol"; import { Constants } from "src/libraries/Constants.sol"; /// @custom:proxied /// @title L2OutputOracle /// @notice The L2OutputOracle contains an array of L2 state outputs, where each output is a /// commitment to the state of the L2 chain. Other contracts like the OptimismPortal use /// these outputs to verify information about the state of L2. contract L2OutputOracle is Initializable, ISemver { /// @notice The number of the first L2 block recorded in this contract. uint256 public startingBlockNumber; /// @notice The timestamp of the first L2 block recorded in this contract. uint256 public startingTimestamp; /// @notice An array of L2 output proposals. Types.OutputProposal[] internal l2Outputs; /// @notice The interval in L2 blocks at which checkpoints must be submitted. /// @custom:network-specific uint256 public submissionInterval; /// @notice The time between L2 blocks in seconds. Once set, this value MUST NOT be modified. /// @custom:network-specific uint256 public l2BlockTime; /// @notice The address of the challenger. Can be updated via upgrade. /// @custom:network-specific address public challenger; /// @notice The address of the proposer. Can be updated via upgrade. /// @custom:network-specific address public proposer; /// @notice The minimum time (in seconds) that must elapse before a withdrawal can be finalized. /// @custom:network-specific uint256 public finalizationPeriodSeconds; /// @notice Emitted when an output is proposed. /// @param outputRoot The output root. /// @param l2OutputIndex The index of the output in the l2Outputs array. /// @param l2BlockNumber The L2 block number of the output root. /// @param l1Timestamp The L1 timestamp when proposed. event OutputProposed( bytes32 indexed outputRoot, uint256 indexed l2OutputIndex, uint256 indexed l2BlockNumber, uint256 l1Timestamp ); /// @notice Emitted when outputs are deleted. /// @param prevNextOutputIndex Next L2 output index before the deletion. /// @param newNextOutputIndex Next L2 output index after the deletion. event OutputsDeleted(uint256 indexed prevNextOutputIndex, uint256 indexed newNextOutputIndex); /// @notice Semantic version. /// @custom:semver 1.8.0 string public constant version = "1.8.0"; /// @notice Constructs the L2OutputOracle contract. Initializes variables to the same values as /// in the getting-started config. constructor() { initialize({ _submissionInterval: 1, _l2BlockTime: 1, _startingBlockNumber: 0, _startingTimestamp: 0, _proposer: address(0), _challenger: address(0), _finalizationPeriodSeconds: 0 }); } /// @notice Initializer. /// @param _submissionInterval Interval in blocks at which checkpoints must be submitted. /// @param _l2BlockTime The time per L2 block, in seconds. /// @param _startingBlockNumber The number of the first L2 block. /// @param _startingTimestamp The timestamp of the first L2 block. /// @param _proposer The address of the proposer. /// @param _challenger The address of the challenger. /// @param _finalizationPeriodSeconds The minimum time (in seconds) that must elapse before a withdrawal /// can be finalized. function initialize( uint256 _submissionInterval, uint256 _l2BlockTime, uint256 _startingBlockNumber, uint256 _startingTimestamp, address _proposer, address _challenger, uint256 _finalizationPeriodSeconds ) public initializer { require(_submissionInterval > 0, "L2OutputOracle: submission interval must be greater than 0"); require(_l2BlockTime > 0, "L2OutputOracle: L2 block time must be greater than 0"); require( _startingTimestamp <= block.timestamp, "L2OutputOracle: starting L2 timestamp must be less than current time" ); submissionInterval = _submissionInterval; l2BlockTime = _l2BlockTime; startingBlockNumber = _startingBlockNumber; startingTimestamp = _startingTimestamp; proposer = _proposer; challenger = _challenger; finalizationPeriodSeconds = _finalizationPeriodSeconds; } /// @notice Getter for the submissionInterval. /// Public getter is legacy and will be removed in the future. Use `submissionInterval` instead. /// @return Submission interval. /// @custom:legacy function SUBMISSION_INTERVAL() external view returns (uint256) { return submissionInterval; } /// @notice Getter for the l2BlockTime. /// Public getter is legacy and will be removed in the future. Use `l2BlockTime` instead. /// @return L2 block time. /// @custom:legacy function L2_BLOCK_TIME() external view returns (uint256) { return l2BlockTime; } /// @notice Getter for the challenger address. /// Public getter is legacy and will be removed in the future. Use `challenger` instead. /// @return Address of the challenger. /// @custom:legacy function CHALLENGER() external view returns (address) { return challenger; } /// @notice Getter for the proposer address. /// Public getter is legacy and will be removed in the future. Use `proposer` instead. /// @return Address of the proposer. /// @custom:legacy function PROPOSER() external view returns (address) { return proposer; } /// @notice Getter for the finalizationPeriodSeconds. /// Public getter is legacy and will be removed in the future. Use `finalizationPeriodSeconds` instead. /// @return Finalization period in seconds. /// @custom:legacy function FINALIZATION_PERIOD_SECONDS() external view returns (uint256) { return finalizationPeriodSeconds; } /// @notice Deletes all output proposals after and including the proposal that corresponds to /// the given output index. Only the challenger address can delete outputs. /// @param _l2OutputIndex Index of the first L2 output to be deleted. /// All outputs after this output will also be deleted. function deleteL2Outputs(uint256 _l2OutputIndex) external { require(msg.sender == challenger, "L2OutputOracle: only the challenger address can delete outputs"); // Make sure we're not *increasing* the length of the array. require( _l2OutputIndex < l2Outputs.length, "L2OutputOracle: cannot delete outputs after the latest output index" ); // Do not allow deleting any outputs that have already been finalized. require( block.timestamp - l2Outputs[_l2OutputIndex].timestamp < finalizationPeriodSeconds, "L2OutputOracle: cannot delete outputs that have already been finalized" ); uint256 prevNextL2OutputIndex = nextOutputIndex(); // Use assembly to delete the array elements because Solidity doesn't allow it. assembly { sstore(l2Outputs.slot, _l2OutputIndex) } emit OutputsDeleted(prevNextL2OutputIndex, _l2OutputIndex); } /// @notice Accepts an outputRoot and the timestamp of the corresponding L2 block. /// The timestamp must be equal to the current value returned by `nextTimestamp()` in /// order to be accepted. This function may only be called by the Proposer. /// @param _outputRoot The L2 output of the checkpoint block. /// @param _l2BlockNumber The L2 block number that resulted in _outputRoot. /// @param _l1BlockHash A block hash which must be included in the current chain. /// @param _l1BlockNumber The block number with the specified block hash. function proposeL2Output( bytes32 _outputRoot, uint256 _l2BlockNumber, bytes32 _l1BlockHash, uint256 _l1BlockNumber ) external payable { require(msg.sender == proposer, "L2OutputOracle: only the proposer address can propose new outputs"); require( _l2BlockNumber == nextBlockNumber(), "L2OutputOracle: block number must be equal to next expected block number" ); require( computeL2Timestamp(_l2BlockNumber) < block.timestamp, "L2OutputOracle: cannot propose L2 output in the future" ); require(_outputRoot != bytes32(0), "L2OutputOracle: L2 output proposal cannot be the zero hash"); if (_l1BlockHash != bytes32(0)) { // This check allows the proposer to propose an output based on a given L1 block, // without fear that it will be reorged out. // It will also revert if the blockheight provided is more than 256 blocks behind the // chain tip (as the hash will return as zero). This does open the door to a griefing // attack in which the proposer's submission is censored until the block is no longer // retrievable, if the proposer is experiencing this attack it can simply leave out the // blockhash value, and delay submission until it is confident that the L1 block is // finalized. require( blockhash(_l1BlockNumber) == _l1BlockHash, "L2OutputOracle: block hash does not match the hash at the expected height" ); } emit OutputProposed(_outputRoot, nextOutputIndex(), _l2BlockNumber, block.timestamp); l2Outputs.push( Types.OutputProposal({ outputRoot: _outputRoot, timestamp: uint128(block.timestamp), l2BlockNumber: uint128(_l2BlockNumber) }) ); } /// @notice Returns an output by index. Needed to return a struct instead of a tuple. /// @param _l2OutputIndex Index of the output to return. /// @return The output at the given index. function getL2Output(uint256 _l2OutputIndex) external view returns (Types.OutputProposal memory) { return l2Outputs[_l2OutputIndex]; } /// @notice Returns the index of the L2 output that checkpoints a given L2 block number. /// Uses a binary search to find the first output greater than or equal to the given /// block. /// @param _l2BlockNumber L2 block number to find a checkpoint for. /// @return Index of the first checkpoint that commits to the given L2 block number. function getL2OutputIndexAfter(uint256 _l2BlockNumber) public view returns (uint256) { // Make sure an output for this block number has actually been proposed. require( _l2BlockNumber <= latestBlockNumber(), "L2OutputOracle: cannot get output for a block that has not been proposed" ); // Make sure there's at least one output proposed. require(l2Outputs.length > 0, "L2OutputOracle: cannot get output as no outputs have been proposed yet"); // Find the output via binary search, guaranteed to exist. uint256 lo = 0; uint256 hi = l2Outputs.length; while (lo < hi) { uint256 mid = (lo + hi) / 2; if (l2Outputs[mid].l2BlockNumber < _l2BlockNumber) { lo = mid + 1; } else { hi = mid; } } return lo; } /// @notice Returns the L2 output proposal that checkpoints a given L2 block number. /// Uses a binary search to find the first output greater than or equal to the given /// block. /// @param _l2BlockNumber L2 block number to find a checkpoint for. /// @return First checkpoint that commits to the given L2 block number. function getL2OutputAfter(uint256 _l2BlockNumber) external view returns (Types.OutputProposal memory) { return l2Outputs[getL2OutputIndexAfter(_l2BlockNumber)]; } /// @notice Returns the number of outputs that have been proposed. /// Will revert if no outputs have been proposed yet. /// @return The number of outputs that have been proposed. function latestOutputIndex() external view returns (uint256) { return l2Outputs.length - 1; } /// @notice Returns the index of the next output to be proposed. /// @return The index of the next output to be proposed. function nextOutputIndex() public view returns (uint256) { return l2Outputs.length; } /// @notice Returns the block number of the latest submitted L2 output proposal. /// If no proposals been submitted yet then this function will return the starting /// block number. /// @return Latest submitted L2 block number. function latestBlockNumber() public view returns (uint256) { return l2Outputs.length == 0 ? startingBlockNumber : l2Outputs[l2Outputs.length - 1].l2BlockNumber; } /// @notice Computes the block number of the next L2 block that needs to be checkpointed. /// @return Next L2 block number. function nextBlockNumber() public view returns (uint256) { return latestBlockNumber() + submissionInterval; } /// @notice Returns the L2 timestamp corresponding to a given L2 block number. /// @param _l2BlockNumber The L2 block number of the target block. /// @return L2 timestamp of the given block. function computeL2Timestamp(uint256 _l2BlockNumber) public view returns (uint256) { return startingTimestamp + ((_l2BlockNumber - startingBlockNumber) * l2BlockTime); } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol"; import { ISemver } from "src/universal/ISemver.sol"; import { Storage } from "src/libraries/Storage.sol"; /// @custom:audit none This contracts is not yet audited. /// @title SuperchainConfig /// @notice The SuperchainConfig contract is used to manage configuration of global superchain values. contract SuperchainConfig is Initializable, ISemver { /// @notice Enum representing different types of updates. /// @custom:value GUARDIAN Represents an update to the guardian. enum UpdateType { GUARDIAN } /// @notice Whether or not the Superchain is paused. bytes32 public constant PAUSED_SLOT = bytes32(uint256(keccak256("superchainConfig.paused")) - 1); /// @notice The address of the guardian, which can pause withdrawals from the System. /// It can only be modified by an upgrade. bytes32 public constant GUARDIAN_SLOT = bytes32(uint256(keccak256("superchainConfig.guardian")) - 1); /// @notice Emitted when the pause is triggered. /// @param identifier A string helping to identify provenance of the pause transaction. event Paused(string identifier); /// @notice Emitted when the pause is lifted. event Unpaused(); /// @notice Emitted when configuration is updated. /// @param updateType Type of update. /// @param data Encoded update data. event ConfigUpdate(UpdateType indexed updateType, bytes data); /// @notice Semantic version. /// @custom:semver 1.1.0 string public constant version = "1.1.0"; /// @notice Constructs the SuperchainConfig contract. constructor() { initialize({ _guardian: address(0), _paused: false }); } /// @notice Initializer. /// @param _guardian Address of the guardian, can pause the OptimismPortal. /// @param _paused Initial paused status. function initialize(address _guardian, bool _paused) public initializer { _setGuardian(_guardian); if (_paused) { _pause("Initializer paused"); } } /// @notice Getter for the guardian address. function guardian() public view returns (address guardian_) { guardian_ = Storage.getAddress(GUARDIAN_SLOT); } /// @notice Getter for the current paused status. function paused() public view returns (bool paused_) { paused_ = Storage.getBool(PAUSED_SLOT); } /// @notice Pauses withdrawals. /// @param _identifier (Optional) A string to identify provenance of the pause transaction. function pause(string memory _identifier) external { require(msg.sender == guardian(), "SuperchainConfig: only guardian can pause"); _pause(_identifier); } /// @notice Pauses withdrawals. /// @param _identifier (Optional) A string to identify provenance of the pause transaction. function _pause(string memory _identifier) internal { Storage.setBool(PAUSED_SLOT, true); emit Paused(_identifier); } /// @notice Unpauses withdrawals. function unpause() external { require(msg.sender == guardian(), "SuperchainConfig: only guardian can unpause"); Storage.setBool(PAUSED_SLOT, false); emit Unpaused(); } /// @notice Sets the guardian address. This is only callable during initialization, so an upgrade /// will be required to change the guardian. /// @param _guardian The new guardian address. function _setGuardian(address _guardian) internal { Storage.setAddress(GUARDIAN_SLOT, _guardian); emit ConfigUpdate(UpdateType.GUARDIAN, abi.encode(_guardian)); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @title Types /// @notice Contains various types used throughout the Optimism contract system. library Types { /// @notice OutputProposal represents a commitment to the L2 state. The timestamp is the L1 /// timestamp that the output root is posted. This timestamp is used to verify that the /// finalization period has passed since the output root was submitted. /// @custom:field outputRoot Hash of the L2 output. /// @custom:field timestamp Timestamp of the L1 block that the output root was submitted in. /// @custom:field l2BlockNumber L2 block number that the output corresponds to. struct OutputProposal { bytes32 outputRoot; uint128 timestamp; uint128 l2BlockNumber; } /// @notice Struct representing the elements that are hashed together to generate an output root /// which itself represents a snapshot of the L2 state. /// @custom:field version Version of the output root. /// @custom:field stateRoot Root of the state trie at the block of this output. /// @custom:field messagePasserStorageRoot Root of the message passer storage trie. /// @custom:field latestBlockhash Hash of the block this output was generated from. struct OutputRootProof { bytes32 version; bytes32 stateRoot; bytes32 messagePasserStorageRoot; bytes32 latestBlockhash; } /// @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end /// user (as opposed to a system deposit transaction generated by the system). /// @custom:field from Address of the sender of the transaction. /// @custom:field to Address of the recipient of the transaction. /// @custom:field isCreation True if the transaction is a contract creation. /// @custom:field value Value to send to the recipient. /// @custom:field mint Amount of ETH to mint. /// @custom:field gasLimit Gas limit of the transaction. /// @custom:field data Data of the transaction. /// @custom:field l1BlockHash Hash of the block the transaction was submitted in. /// @custom:field logIndex Index of the log in the block the transaction was submitted in. struct UserDepositTransaction { address from; address to; bool isCreation; uint256 value; uint256 mint; uint64 gasLimit; bytes data; bytes32 l1BlockHash; uint256 logIndex; } /// @notice Struct representing a withdrawal transaction. /// @custom:field nonce Nonce of the withdrawal transaction /// @custom:field sender Address of the sender of the transaction. /// @custom:field target Address of the recipient of the transaction. /// @custom:field value Value to send to the recipient. /// @custom:field gasLimit Gas limit of the transaction. /// @custom:field data Data of the transaction. struct WithdrawalTransaction { uint256 nonce; address sender; address target; uint256 value; uint256 gasLimit; bytes data; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { Types } from "src/libraries/Types.sol"; import { Encoding } from "src/libraries/Encoding.sol"; /// @title Hashing /// @notice Hashing handles Optimism's various different hashing schemes. library Hashing { /// @notice Computes the hash of the RLP encoded L2 transaction that would be generated when a /// given deposit is sent to the L2 system. Useful for searching for a deposit in the L2 /// system. /// @param _tx User deposit transaction to hash. /// @return Hash of the RLP encoded L2 deposit transaction. function hashDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes32) { return keccak256(Encoding.encodeDepositTransaction(_tx)); } /// @notice Computes the deposit transaction's "source hash", a value that guarantees the hash /// of the L2 transaction that corresponds to a deposit is unique and is /// deterministically generated from L1 transaction data. /// @param _l1BlockHash Hash of the L1 block where the deposit was included. /// @param _logIndex The index of the log that created the deposit transaction. /// @return Hash of the deposit transaction's "source hash". function hashDepositSource(bytes32 _l1BlockHash, uint256 _logIndex) internal pure returns (bytes32) { bytes32 depositId = keccak256(abi.encode(_l1BlockHash, _logIndex)); return keccak256(abi.encode(bytes32(0), depositId)); } /// @notice Hashes the cross domain message based on the version that is encoded into the /// message nonce. /// @param _nonce Message nonce with version encoded into the first two bytes. /// @param _sender Address of the sender of the message. /// @param _target Address of the target of the message. /// @param _value ETH value to send to the target. /// @param _gasLimit Gas limit to use for the message. /// @param _data Data to send with the message. /// @return Hashed cross domain message. function hashCrossDomainMessage( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _gasLimit, bytes memory _data ) internal pure returns (bytes32) { (, uint16 version) = Encoding.decodeVersionedNonce(_nonce); if (version == 0) { return hashCrossDomainMessageV0(_target, _sender, _data, _nonce); } else if (version == 1) { return hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data); } else { revert("Hashing: unknown cross domain message version"); } } /// @notice Hashes a cross domain message based on the V0 (legacy) encoding. /// @param _target Address of the target of the message. /// @param _sender Address of the sender of the message. /// @param _data Data to send with the message. /// @param _nonce Message nonce. /// @return Hashed cross domain message. function hashCrossDomainMessageV0( address _target, address _sender, bytes memory _data, uint256 _nonce ) internal pure returns (bytes32) { return keccak256(Encoding.encodeCrossDomainMessageV0(_target, _sender, _data, _nonce)); } /// @notice Hashes a cross domain message based on the V1 (current) encoding. /// @param _nonce Message nonce. /// @param _sender Address of the sender of the message. /// @param _target Address of the target of the message. /// @param _value ETH value to send to the target. /// @param _gasLimit Gas limit to use for the message. /// @param _data Data to send with the message. /// @return Hashed cross domain message. function hashCrossDomainMessageV1( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _gasLimit, bytes memory _data ) internal pure returns (bytes32) { return keccak256(Encoding.encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data)); } /// @notice Derives the withdrawal hash according to the encoding in the L2 Withdrawer contract /// @param _tx Withdrawal transaction to hash. /// @return Hashed withdrawal transaction. function hashWithdrawal(Types.WithdrawalTransaction memory _tx) internal pure returns (bytes32) { return keccak256(abi.encode(_tx.nonce, _tx.sender, _tx.target, _tx.value, _tx.gasLimit, _tx.data)); } /// @notice Hashes the various elements of an output root proof into an output root hash which /// can be used to check if the proof is valid. /// @param _outputRootProof Output root proof which should hash to an output root. /// @return Hashed output root proof. function hashOutputRootProof(Types.OutputRootProof memory _outputRootProof) internal pure returns (bytes32) { return keccak256( abi.encode( _outputRootProof.version, _outputRootProof.stateRoot, _outputRootProof.messagePasserStorageRoot, _outputRootProof.latestBlockhash ) ); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { MerkleTrie } from "./MerkleTrie.sol"; /// @title SecureMerkleTrie /// @notice SecureMerkleTrie is a thin wrapper around the MerkleTrie library that hashes the input /// keys. Ethereum's state trie hashes input keys before storing them. library SecureMerkleTrie { /// @notice Verifies a proof that a given key/value pair is present in the Merkle trie. /// @param _key Key of the node to search for, as a hex string. /// @param _value Value of the node to search for, as a hex string. /// @param _proof Merkle trie inclusion proof for the desired node. Unlike traditional Merkle /// trees, this proof is executed top-down and consists of a list of RLP-encoded /// nodes that make a path down to the target node. /// @param _root Known root of the Merkle trie. Used to verify that the included proof is /// correctly constructed. /// @return valid_ Whether or not the proof is valid. function verifyInclusionProof( bytes memory _key, bytes memory _value, bytes[] memory _proof, bytes32 _root ) internal pure returns (bool valid_) { bytes memory key = _getSecureKey(_key); valid_ = MerkleTrie.verifyInclusionProof(key, _value, _proof, _root); } /// @notice Retrieves the value associated with a given key. /// @param _key Key to search for, as hex bytes. /// @param _proof Merkle trie inclusion proof for the key. /// @param _root Known root of the Merkle trie. /// @return value_ Value of the key if it exists. function get(bytes memory _key, bytes[] memory _proof, bytes32 _root) internal pure returns (bytes memory value_) { bytes memory key = _getSecureKey(_key); value_ = MerkleTrie.get(key, _proof, _root); } /// @notice Computes the hashed version of the input key. /// @param _key Key to hash. /// @return hash_ Hashed version of the key. function _getSecureKey(bytes memory _key) private pure returns (bytes memory hash_) { hash_ = abi.encodePacked(keccak256(_key)); } }
// SPDX-License-Identifier: Apache-2.0 /* * Copyright 2019-2021, Offchain Labs, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ pragma solidity ^0.8.0; library AddressAliasHelper { uint160 constant offset = uint160(0x1111000000000000000000000000000000001111); /// @notice Utility function that converts the address in the L1 that submitted a tx to /// the inbox to the msg.sender viewed in the L2 /// @param l1Address the address in the L1 that triggered the tx to L2 /// @return l2Address L2 address as viewed in msg.sender function applyL1ToL2Alias(address l1Address) internal pure returns (address l2Address) { unchecked { l2Address = address(uint160(l1Address) + offset); } } /// @notice Utility function that converts the msg.sender viewed in the L2 to the /// address in the L1 that submitted a tx to the inbox /// @param l2Address L2 address as viewed in msg.sender /// @return l1Address the address in the L1 that triggered the tx to L2 function undoL1ToL2Alias(address l2Address) internal pure returns (address l1Address) { unchecked { l1Address = address(uint160(l2Address) - offset); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../extensions/draft-IERC20Permit.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; function safeTransfer( IERC20 token, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove( IERC20 token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender) + value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance( IERC20 token, address spender, uint256 value ) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); uint256 newAllowance = oldAllowance - value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } } function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { ISemver } from "src/universal/ISemver.sol"; import { Constants } from "src/libraries/Constants.sol"; import { GasPayingToken, IGasToken } from "src/libraries/GasPayingToken.sol"; /// @custom:proxied /// @custom:predeploy 0x4200000000000000000000000000000000000015 /// @title L1Block /// @notice The L1Block predeploy gives users access to information about the last known L1 block. /// Values within this contract are updated once per epoch (every L1 block) and can only be /// set by the "depositor" account, a special system address. Depositor account transactions /// are created by the protocol whenever we move to a new epoch. contract L1Block is ISemver, IGasToken { /// @notice Error returns when a non-depositor account tries to set L1 block values. error NotDepositor(); /// @notice Event emitted when the gas paying token is set. event GasPayingTokenSet(address indexed token, uint8 indexed decimals, bytes32 name, bytes32 symbol); /// @notice Address of the special depositor account. function DEPOSITOR_ACCOUNT() public pure returns (address addr_) { addr_ = Constants.DEPOSITOR_ACCOUNT; } /// @notice The latest L1 block number known by the L2 system. uint64 public number; /// @notice The latest L1 timestamp known by the L2 system. uint64 public timestamp; /// @notice The latest L1 base fee. uint256 public basefee; /// @notice The latest L1 blockhash. bytes32 public hash; /// @notice The number of L2 blocks in the same epoch. uint64 public sequenceNumber; /// @notice The scalar value applied to the L1 blob base fee portion of the blob-capable L1 cost func. uint32 public blobBaseFeeScalar; /// @notice The scalar value applied to the L1 base fee portion of the blob-capable L1 cost func. uint32 public baseFeeScalar; /// @notice The versioned hash to authenticate the batcher by. bytes32 public batcherHash; /// @notice The overhead value applied to the L1 portion of the transaction fee. /// @custom:legacy uint256 public l1FeeOverhead; /// @notice The scalar value applied to the L1 portion of the transaction fee. /// @custom:legacy uint256 public l1FeeScalar; /// @notice The latest L1 blob base fee. uint256 public blobBaseFee; /// @custom:semver 1.4.0 function version() public pure virtual returns (string memory) { return "1.4.0"; } /// @notice Returns the gas paying token, its decimals, name and symbol. /// If nothing is set in state, then it means ether is used. function gasPayingToken() public view returns (address addr_, uint8 decimals_) { (addr_, decimals_) = GasPayingToken.getToken(); } /// @notice Returns the gas paying token name. /// If nothing is set in state, then it means ether is used. function gasPayingTokenName() public view returns (string memory name_) { name_ = GasPayingToken.getName(); } /// @notice Returns the gas paying token symbol. /// If nothing is set in state, then it means ether is used. function gasPayingTokenSymbol() public view returns (string memory symbol_) { symbol_ = GasPayingToken.getSymbol(); } /// @notice Getter for custom gas token paying networks. Returns true if the /// network uses a custom gas token. function isCustomGasToken() public view returns (bool) { (address token,) = gasPayingToken(); return token != Constants.ETHER; } /// @custom:legacy /// @notice Updates the L1 block values. /// @param _number L1 blocknumber. /// @param _timestamp L1 timestamp. /// @param _basefee L1 basefee. /// @param _hash L1 blockhash. /// @param _sequenceNumber Number of L2 blocks since epoch start. /// @param _batcherHash Versioned hash to authenticate batcher by. /// @param _l1FeeOverhead L1 fee overhead. /// @param _l1FeeScalar L1 fee scalar. function setL1BlockValues( uint64 _number, uint64 _timestamp, uint256 _basefee, bytes32 _hash, uint64 _sequenceNumber, bytes32 _batcherHash, uint256 _l1FeeOverhead, uint256 _l1FeeScalar ) external { require(msg.sender == DEPOSITOR_ACCOUNT(), "L1Block: only the depositor account can set L1 block values"); number = _number; timestamp = _timestamp; basefee = _basefee; hash = _hash; sequenceNumber = _sequenceNumber; batcherHash = _batcherHash; l1FeeOverhead = _l1FeeOverhead; l1FeeScalar = _l1FeeScalar; } /// @notice Updates the L1 block values for an Ecotone upgraded chain. /// Params are packed and passed in as raw msg.data instead of ABI to reduce calldata size. /// Params are expected to be in the following order: /// 1. _baseFeeScalar L1 base fee scalar /// 2. _blobBaseFeeScalar L1 blob base fee scalar /// 3. _sequenceNumber Number of L2 blocks since epoch start. /// 4. _timestamp L1 timestamp. /// 5. _number L1 blocknumber. /// 6. _basefee L1 base fee. /// 7. _blobBaseFee L1 blob base fee. /// 8. _hash L1 blockhash. /// 9. _batcherHash Versioned hash to authenticate batcher by. function setL1BlockValuesEcotone() external { address depositor = DEPOSITOR_ACCOUNT(); assembly { // Revert if the caller is not the depositor account. if xor(caller(), depositor) { mstore(0x00, 0x3cc50b45) // 0x3cc50b45 is the 4-byte selector of "NotDepositor()" revert(0x1C, 0x04) // returns the stored 4-byte selector from above } // sequencenum (uint64), blobBaseFeeScalar (uint32), baseFeeScalar (uint32) sstore(sequenceNumber.slot, shr(128, calldataload(4))) // number (uint64) and timestamp (uint64) sstore(number.slot, shr(128, calldataload(20))) sstore(basefee.slot, calldataload(36)) // uint256 sstore(blobBaseFee.slot, calldataload(68)) // uint256 sstore(hash.slot, calldataload(100)) // bytes32 sstore(batcherHash.slot, calldataload(132)) // bytes32 } } /// @notice Sets the gas paying token for the L2 system. Can only be called by the special /// depositor account. This function is not called on every L2 block but instead /// only called by specially crafted L1 deposit transactions. function setGasPayingToken(address _token, uint8 _decimals, bytes32 _name, bytes32 _symbol) external { if (msg.sender != DEPOSITOR_ACCOUNT()) revert NotDepositor(); GasPayingToken.set({ _token: _token, _decimals: _decimals, _name: _name, _symbol: _symbol }); emit GasPayingTokenSet({ token: _token, decimals: _decimals, name: _name, symbol: _symbol }); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @title Predeploys /// @notice Contains constant addresses for protocol contracts that are pre-deployed to the L2 system. // This excludes the preinstalls (non-protocol contracts). library Predeploys { /// @notice Number of predeploy-namespace addresses reserved for protocol usage. uint256 internal constant PREDEPLOY_COUNT = 2048; /// @custom:legacy /// @notice Address of the LegacyMessagePasser predeploy. Deprecate. Use the updated /// L2ToL1MessagePasser contract instead. address internal constant LEGACY_MESSAGE_PASSER = 0x4200000000000000000000000000000000000000; /// @custom:legacy /// @notice Address of the L1MessageSender predeploy. Deprecated. Use L2CrossDomainMessenger /// or access tx.origin (or msg.sender) in a L1 to L2 transaction instead. /// Not embedded into new OP-Stack chains. address internal constant L1_MESSAGE_SENDER = 0x4200000000000000000000000000000000000001; /// @custom:legacy /// @notice Address of the DeployerWhitelist predeploy. No longer active. address internal constant DEPLOYER_WHITELIST = 0x4200000000000000000000000000000000000002; /// @notice Address of the canonical WETH contract. address internal constant WETH = 0x4200000000000000000000000000000000000006; /// @notice Address of the L2CrossDomainMessenger predeploy. address internal constant L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000007; /// @notice Address of the GasPriceOracle predeploy. Includes fee information /// and helpers for computing the L1 portion of the transaction fee. address internal constant GAS_PRICE_ORACLE = 0x420000000000000000000000000000000000000F; /// @notice Address of the L2StandardBridge predeploy. address internal constant L2_STANDARD_BRIDGE = 0x4200000000000000000000000000000000000010; //// @notice Address of the SequencerFeeWallet predeploy. address internal constant SEQUENCER_FEE_WALLET = 0x4200000000000000000000000000000000000011; /// @notice Address of the OptimismMintableERC20Factory predeploy. address internal constant OPTIMISM_MINTABLE_ERC20_FACTORY = 0x4200000000000000000000000000000000000012; /// @custom:legacy /// @notice Address of the L1BlockNumber predeploy. Deprecated. Use the L1Block predeploy /// instead, which exposes more information about the L1 state. address internal constant L1_BLOCK_NUMBER = 0x4200000000000000000000000000000000000013; /// @notice Address of the L2ERC721Bridge predeploy. address internal constant L2_ERC721_BRIDGE = 0x4200000000000000000000000000000000000014; /// @notice Address of the L1Block predeploy. address internal constant L1_BLOCK_ATTRIBUTES = 0x4200000000000000000000000000000000000015; /// @notice Address of the L2ToL1MessagePasser predeploy. address internal constant L2_TO_L1_MESSAGE_PASSER = 0x4200000000000000000000000000000000000016; /// @notice Address of the OptimismMintableERC721Factory predeploy. address internal constant OPTIMISM_MINTABLE_ERC721_FACTORY = 0x4200000000000000000000000000000000000017; /// @notice Address of the ProxyAdmin predeploy. address internal constant PROXY_ADMIN = 0x4200000000000000000000000000000000000018; /// @notice Address of the BaseFeeVault predeploy. address internal constant BASE_FEE_VAULT = 0x4200000000000000000000000000000000000019; /// @notice Address of the L1FeeVault predeploy. address internal constant L1_FEE_VAULT = 0x420000000000000000000000000000000000001A; /// @notice Address of the SchemaRegistry predeploy. address internal constant SCHEMA_REGISTRY = 0x4200000000000000000000000000000000000020; /// @notice Address of the EAS predeploy. address internal constant EAS = 0x4200000000000000000000000000000000000021; /// @notice Address of the GovernanceToken predeploy. address internal constant GOVERNANCE_TOKEN = 0x4200000000000000000000000000000000000042; /// @custom:legacy /// @notice Address of the LegacyERC20ETH predeploy. Deprecated. Balances are migrated to the /// state trie as of the Bedrock upgrade. Contract has been locked and write functions /// can no longer be accessed. address internal constant LEGACY_ERC20_ETH = 0xDeadDeAddeAddEAddeadDEaDDEAdDeaDDeAD0000; /// @notice Address of the CrossL2Inbox predeploy. address internal constant CROSS_L2_INBOX = 0x4200000000000000000000000000000000000022; /// @notice Address of the L2ToL2CrossDomainMessenger predeploy. address internal constant L2_TO_L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000023; /// @notice Returns the name of the predeploy at the given address. function getName(address _addr) internal pure returns (string memory out_) { require(isPredeployNamespace(_addr), "Predeploys: address must be a predeploy"); if (_addr == LEGACY_MESSAGE_PASSER) return "LegacyMessagePasser"; if (_addr == L1_MESSAGE_SENDER) return "L1MessageSender"; if (_addr == DEPLOYER_WHITELIST) return "DeployerWhitelist"; if (_addr == WETH) return "WETH"; if (_addr == L2_CROSS_DOMAIN_MESSENGER) return "L2CrossDomainMessenger"; if (_addr == GAS_PRICE_ORACLE) return "GasPriceOracle"; if (_addr == L2_STANDARD_BRIDGE) return "L2StandardBridge"; if (_addr == SEQUENCER_FEE_WALLET) return "SequencerFeeVault"; if (_addr == OPTIMISM_MINTABLE_ERC20_FACTORY) return "OptimismMintableERC20Factory"; if (_addr == L1_BLOCK_NUMBER) return "L1BlockNumber"; if (_addr == L2_ERC721_BRIDGE) return "L2ERC721Bridge"; if (_addr == L1_BLOCK_ATTRIBUTES) return "L1Block"; if (_addr == L2_TO_L1_MESSAGE_PASSER) return "L2ToL1MessagePasser"; if (_addr == OPTIMISM_MINTABLE_ERC721_FACTORY) return "OptimismMintableERC721Factory"; if (_addr == PROXY_ADMIN) return "ProxyAdmin"; if (_addr == BASE_FEE_VAULT) return "BaseFeeVault"; if (_addr == L1_FEE_VAULT) return "L1FeeVault"; if (_addr == SCHEMA_REGISTRY) return "SchemaRegistry"; if (_addr == EAS) return "EAS"; if (_addr == GOVERNANCE_TOKEN) return "GovernanceToken"; if (_addr == LEGACY_ERC20_ETH) return "LegacyERC20ETH"; if (_addr == CROSS_L2_INBOX) return "CrossL2Inbox"; if (_addr == L2_TO_L2_CROSS_DOMAIN_MESSENGER) return "L2ToL2CrossDomainMessenger"; revert("Predeploys: unnamed predeploy"); } /// @notice Returns true if the predeploy is not proxied. function notProxied(address _addr) internal pure returns (bool) { return _addr == GOVERNANCE_TOKEN || _addr == WETH; } /// @notice Returns true if the address is a defined predeploy that is embedded into new OP-Stack chains. function isSupportedPredeploy(address _addr, bool _useInterop) internal pure returns (bool) { return _addr == LEGACY_MESSAGE_PASSER || _addr == DEPLOYER_WHITELIST || _addr == WETH || _addr == L2_CROSS_DOMAIN_MESSENGER || _addr == GAS_PRICE_ORACLE || _addr == L2_STANDARD_BRIDGE || _addr == SEQUENCER_FEE_WALLET || _addr == OPTIMISM_MINTABLE_ERC20_FACTORY || _addr == L1_BLOCK_NUMBER || _addr == L2_ERC721_BRIDGE || _addr == L1_BLOCK_ATTRIBUTES || _addr == L2_TO_L1_MESSAGE_PASSER || _addr == OPTIMISM_MINTABLE_ERC721_FACTORY || _addr == PROXY_ADMIN || _addr == BASE_FEE_VAULT || _addr == L1_FEE_VAULT || _addr == SCHEMA_REGISTRY || _addr == EAS || _addr == GOVERNANCE_TOKEN || (_useInterop && _addr == CROSS_L2_INBOX) || (_useInterop && _addr == L2_TO_L2_CROSS_DOMAIN_MESSENGER); } function isPredeployNamespace(address _addr) internal pure returns (bool) { return uint160(_addr) >> 11 == uint160(0x4200000000000000000000000000000000000000) >> 11; } /// @notice Function to compute the expected address of the predeploy implementation /// in the genesis state. function predeployToCodeNamespace(address _addr) internal pure returns (address) { require( isPredeployNamespace(_addr), "Predeploys: can only derive code-namespace address for predeploy addresses" ); return address( uint160(uint256(uint160(_addr)) & 0xffff | uint256(uint160(0xc0D3C0d3C0d3C0D3c0d3C0d3c0D3C0d3c0d30000))) ); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @notice Error for when a deposit or withdrawal is to a bad target. error BadTarget(); /// @notice Error for when a deposit has too much calldata. error LargeCalldata(); /// @notice Error for when a deposit has too small of a gas limit. error SmallGasLimit(); /// @notice Error for when a withdrawal transfer fails. error TransferFailed(); /// @notice Error for when a method is called that only works when using a custom gas token. error OnlyCustomGasToken(); /// @notice Error for when a method cannot be called with non zero CALLVALUE. error NoValue(); /// @notice Error for an unauthorized CALLER. error Unauthorized(); /// @notice Error for when a method cannot be called when paused. This could be renamed /// to `Paused` in the future, but it collides with the `Paused` event. error CallPaused(); /// @notice Error for special gas estimation. error GasEstimation(); /// @notice Error for when a method is being reentered. error NonReentrant();
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Library for converting numbers into strings and other string operations. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibString.sol) /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/LibString.sol) /// /// Note: /// For performance and bytecode compactness, most of the string operations are restricted to /// byte strings (7-bit ASCII), except where otherwise specified. /// Usage of byte string operations on charsets with runes spanning two or more bytes /// can lead to undefined behavior. library LibString { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The length of the output is too small to contain all the hex digits. error HexLengthInsufficient(); /// @dev The length of the string is more than 32 bytes. error TooBigForSmallString(); /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CONSTANTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The constant returned when the `search` is not found in the string. uint256 internal constant NOT_FOUND = type(uint256).max; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* DECIMAL OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns the base 10 decimal representation of `value`. function toString(uint256 value) internal pure returns (string memory str) { /// @solidity memory-safe-assembly assembly { // The maximum value of a uint256 contains 78 digits (1 byte per digit), but // we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned. // We will need 1 word for the trailing zeros padding, 1 word for the length, // and 3 words for a maximum of 78 digits. str := add(mload(0x40), 0x80) // Update the free memory pointer to allocate. mstore(0x40, add(str, 0x20)) // Zeroize the slot after the string. mstore(str, 0) // Cache the end of the memory to calculate the length later. let end := str let w := not(0) // Tsk. // We write the string from rightmost digit to leftmost digit. // The following is essentially a do-while loop that also handles the zero case. for { let temp := value } 1 {} { str := add(str, w) // `sub(str, 1)`. // Write the character to the pointer. // The ASCII index of the '0' character is 48. mstore8(str, add(48, mod(temp, 10))) // Keep dividing `temp` until zero. temp := div(temp, 10) if iszero(temp) { break } } let length := sub(end, str) // Move the pointer 32 bytes leftwards to make room for the length. str := sub(str, 0x20) // Store the length. mstore(str, length) } } /// @dev Returns the base 10 decimal representation of `value`. function toString(int256 value) internal pure returns (string memory str) { if (value >= 0) { return toString(uint256(value)); } unchecked { str = toString(uint256(-value)); } /// @solidity memory-safe-assembly assembly { // We still have some spare memory space on the left, // as we have allocated 3 words (96 bytes) for up to 78 digits. let length := mload(str) // Load the string length. mstore(str, 0x2d) // Store the '-' character. str := sub(str, 1) // Move back the string pointer by a byte. mstore(str, add(length, 1)) // Update the string length. } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* HEXADECIMAL OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns the hexadecimal representation of `value`, /// left-padded to an input length of `length` bytes. /// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte, /// giving a total length of `length * 2 + 2` bytes. /// Reverts if `length` is too small for the output to contain all the digits. function toHexString(uint256 value, uint256 length) internal pure returns (string memory str) { str = toHexStringNoPrefix(value, length); /// @solidity memory-safe-assembly assembly { let strLength := add(mload(str), 2) // Compute the length. mstore(str, 0x3078) // Write the "0x" prefix. str := sub(str, 2) // Move the pointer. mstore(str, strLength) // Write the length. } } /// @dev Returns the hexadecimal representation of `value`, /// left-padded to an input length of `length` bytes. /// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte, /// giving a total length of `length * 2` bytes. /// Reverts if `length` is too small for the output to contain all the digits. function toHexStringNoPrefix(uint256 value, uint256 length) internal pure returns (string memory str) { /// @solidity memory-safe-assembly assembly { // We need 0x20 bytes for the trailing zeros padding, `length * 2` bytes // for the digits, 0x02 bytes for the prefix, and 0x20 bytes for the length. // We add 0x20 to the total and round down to a multiple of 0x20. // (0x20 + 0x20 + 0x02 + 0x20) = 0x62. str := add(mload(0x40), and(add(shl(1, length), 0x42), not(0x1f))) // Allocate the memory. mstore(0x40, add(str, 0x20)) // Zeroize the slot after the string. mstore(str, 0) // Cache the end to calculate the length later. let end := str // Store "0123456789abcdef" in scratch space. mstore(0x0f, 0x30313233343536373839616263646566) let start := sub(str, add(length, length)) let w := not(1) // Tsk. let temp := value // We write the string from rightmost digit to leftmost digit. // The following is essentially a do-while loop that also handles the zero case. for {} 1 {} { str := add(str, w) // `sub(str, 2)`. mstore8(add(str, 1), mload(and(temp, 15))) mstore8(str, mload(and(shr(4, temp), 15))) temp := shr(8, temp) if iszero(xor(str, start)) { break } } if temp { mstore(0x00, 0x2194895a) // `HexLengthInsufficient()`. revert(0x1c, 0x04) } // Compute the string's length. let strLength := sub(end, str) // Move the pointer and write the length. str := sub(str, 0x20) mstore(str, strLength) } } /// @dev Returns the hexadecimal representation of `value`. /// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte. /// As address are 20 bytes long, the output will left-padded to have /// a length of `20 * 2 + 2` bytes. function toHexString(uint256 value) internal pure returns (string memory str) { str = toHexStringNoPrefix(value); /// @solidity memory-safe-assembly assembly { let strLength := add(mload(str), 2) // Compute the length. mstore(str, 0x3078) // Write the "0x" prefix. str := sub(str, 2) // Move the pointer. mstore(str, strLength) // Write the length. } } /// @dev Returns the hexadecimal representation of `value`. /// The output is prefixed with "0x". /// The output excludes leading "0" from the `toHexString` output. /// `0x00: "0x0", 0x01: "0x1", 0x12: "0x12", 0x123: "0x123"`. function toMinimalHexString(uint256 value) internal pure returns (string memory str) { str = toHexStringNoPrefix(value); /// @solidity memory-safe-assembly assembly { let o := eq(byte(0, mload(add(str, 0x20))), 0x30) // Whether leading zero is present. let strLength := add(mload(str), 2) // Compute the length. mstore(add(str, o), 0x3078) // Write the "0x" prefix, accounting for leading zero. str := sub(add(str, o), 2) // Move the pointer, accounting for leading zero. mstore(str, sub(strLength, o)) // Write the length, accounting for leading zero. } } /// @dev Returns the hexadecimal representation of `value`. /// The output excludes leading "0" from the `toHexStringNoPrefix` output. /// `0x00: "0", 0x01: "1", 0x12: "12", 0x123: "123"`. function toMinimalHexStringNoPrefix(uint256 value) internal pure returns (string memory str) { str = toHexStringNoPrefix(value); /// @solidity memory-safe-assembly assembly { let o := eq(byte(0, mload(add(str, 0x20))), 0x30) // Whether leading zero is present. let strLength := mload(str) // Get the length. str := add(str, o) // Move the pointer, accounting for leading zero. mstore(str, sub(strLength, o)) // Write the length, accounting for leading zero. } } /// @dev Returns the hexadecimal representation of `value`. /// The output is encoded using 2 hexadecimal digits per byte. /// As address are 20 bytes long, the output will left-padded to have /// a length of `20 * 2` bytes. function toHexStringNoPrefix(uint256 value) internal pure returns (string memory str) { /// @solidity memory-safe-assembly assembly { // We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length, // 0x02 bytes for the prefix, and 0x40 bytes for the digits. // The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x40) is 0xa0. str := add(mload(0x40), 0x80) // Allocate the memory. mstore(0x40, add(str, 0x20)) // Zeroize the slot after the string. mstore(str, 0) // Cache the end to calculate the length later. let end := str // Store "0123456789abcdef" in scratch space. mstore(0x0f, 0x30313233343536373839616263646566) let w := not(1) // Tsk. // We write the string from rightmost digit to leftmost digit. // The following is essentially a do-while loop that also handles the zero case. for { let temp := value } 1 {} { str := add(str, w) // `sub(str, 2)`. mstore8(add(str, 1), mload(and(temp, 15))) mstore8(str, mload(and(shr(4, temp), 15))) temp := shr(8, temp) if iszero(temp) { break } } // Compute the string's length. let strLength := sub(end, str) // Move the pointer and write the length. str := sub(str, 0x20) mstore(str, strLength) } } /// @dev Returns the hexadecimal representation of `value`. /// The output is prefixed with "0x", encoded using 2 hexadecimal digits per byte, /// and the alphabets are capitalized conditionally according to /// https://eips.ethereum.org/EIPS/eip-55 function toHexStringChecksummed(address value) internal pure returns (string memory str) { str = toHexString(value); /// @solidity memory-safe-assembly assembly { let mask := shl(6, div(not(0), 255)) // `0b010000000100000000 ...` let o := add(str, 0x22) let hashed := and(keccak256(o, 40), mul(34, mask)) // `0b10001000 ... ` let t := shl(240, 136) // `0b10001000 << 240` for { let i := 0 } 1 {} { mstore(add(i, i), mul(t, byte(i, hashed))) i := add(i, 1) if eq(i, 20) { break } } mstore(o, xor(mload(o), shr(1, and(mload(0x00), and(mload(o), mask))))) o := add(o, 0x20) mstore(o, xor(mload(o), shr(1, and(mload(0x20), and(mload(o), mask))))) } } /// @dev Returns the hexadecimal representation of `value`. /// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte. function toHexString(address value) internal pure returns (string memory str) { str = toHexStringNoPrefix(value); /// @solidity memory-safe-assembly assembly { let strLength := add(mload(str), 2) // Compute the length. mstore(str, 0x3078) // Write the "0x" prefix. str := sub(str, 2) // Move the pointer. mstore(str, strLength) // Write the length. } } /// @dev Returns the hexadecimal representation of `value`. /// The output is encoded using 2 hexadecimal digits per byte. function toHexStringNoPrefix(address value) internal pure returns (string memory str) { /// @solidity memory-safe-assembly assembly { str := mload(0x40) // Allocate the memory. // We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length, // 0x02 bytes for the prefix, and 0x28 bytes for the digits. // The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x28) is 0x80. mstore(0x40, add(str, 0x80)) // Store "0123456789abcdef" in scratch space. mstore(0x0f, 0x30313233343536373839616263646566) str := add(str, 2) mstore(str, 40) let o := add(str, 0x20) mstore(add(o, 40), 0) value := shl(96, value) // We write the string from rightmost digit to leftmost digit. // The following is essentially a do-while loop that also handles the zero case. for { let i := 0 } 1 {} { let p := add(o, add(i, i)) let temp := byte(i, value) mstore8(add(p, 1), mload(and(temp, 15))) mstore8(p, mload(shr(4, temp))) i := add(i, 1) if eq(i, 20) { break } } } } /// @dev Returns the hex encoded string from the raw bytes. /// The output is encoded using 2 hexadecimal digits per byte. function toHexString(bytes memory raw) internal pure returns (string memory str) { str = toHexStringNoPrefix(raw); /// @solidity memory-safe-assembly assembly { let strLength := add(mload(str), 2) // Compute the length. mstore(str, 0x3078) // Write the "0x" prefix. str := sub(str, 2) // Move the pointer. mstore(str, strLength) // Write the length. } } /// @dev Returns the hex encoded string from the raw bytes. /// The output is encoded using 2 hexadecimal digits per byte. function toHexStringNoPrefix(bytes memory raw) internal pure returns (string memory str) { /// @solidity memory-safe-assembly assembly { let length := mload(raw) str := add(mload(0x40), 2) // Skip 2 bytes for the optional prefix. mstore(str, add(length, length)) // Store the length of the output. // Store "0123456789abcdef" in scratch space. mstore(0x0f, 0x30313233343536373839616263646566) let o := add(str, 0x20) let end := add(raw, length) for {} iszero(eq(raw, end)) {} { raw := add(raw, 1) mstore8(add(o, 1), mload(and(mload(raw), 15))) mstore8(o, mload(and(shr(4, mload(raw)), 15))) o := add(o, 2) } mstore(o, 0) // Zeroize the slot after the string. mstore(0x40, add(o, 0x20)) // Allocate the memory. } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* RUNE STRING OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns the number of UTF characters in the string. function runeCount(string memory s) internal pure returns (uint256 result) { /// @solidity memory-safe-assembly assembly { if mload(s) { mstore(0x00, div(not(0), 255)) mstore(0x20, 0x0202020202020202020202020202020202020202020202020303030304040506) let o := add(s, 0x20) let end := add(o, mload(s)) for { result := 1 } 1 { result := add(result, 1) } { o := add(o, byte(0, mload(shr(250, mload(o))))) if iszero(lt(o, end)) { break } } } } } /// @dev Returns if this string is a 7-bit ASCII string. /// (i.e. all characters codes are in [0..127]) function is7BitASCII(string memory s) internal pure returns (bool result) { /// @solidity memory-safe-assembly assembly { let mask := shl(7, div(not(0), 255)) result := 1 let n := mload(s) if n { let o := add(s, 0x20) let end := add(o, n) let last := mload(end) mstore(end, 0) for {} 1 {} { if and(mask, mload(o)) { result := 0 break } o := add(o, 0x20) if iszero(lt(o, end)) { break } } mstore(end, last) } } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* BYTE STRING OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ // For performance and bytecode compactness, byte string operations are restricted // to 7-bit ASCII strings. All offsets are byte offsets, not UTF character offsets. // Usage of byte string operations on charsets with runes spanning two or more bytes // can lead to undefined behavior. /// @dev Returns `subject` all occurrences of `search` replaced with `replacement`. function replace(string memory subject, string memory search, string memory replacement) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { let subjectLength := mload(subject) let searchLength := mload(search) let replacementLength := mload(replacement) subject := add(subject, 0x20) search := add(search, 0x20) replacement := add(replacement, 0x20) result := add(mload(0x40), 0x20) let subjectEnd := add(subject, subjectLength) if iszero(gt(searchLength, subjectLength)) { let subjectSearchEnd := add(sub(subjectEnd, searchLength), 1) let h := 0 if iszero(lt(searchLength, 0x20)) { h := keccak256(search, searchLength) } let m := shl(3, sub(0x20, and(searchLength, 0x1f))) let s := mload(search) for {} 1 {} { let t := mload(subject) // Whether the first `searchLength % 32` bytes of // `subject` and `search` matches. if iszero(shr(m, xor(t, s))) { if h { if iszero(eq(keccak256(subject, searchLength), h)) { mstore(result, t) result := add(result, 1) subject := add(subject, 1) if iszero(lt(subject, subjectSearchEnd)) { break } continue } } // Copy the `replacement` one word at a time. for { let o := 0 } 1 {} { mstore(add(result, o), mload(add(replacement, o))) o := add(o, 0x20) if iszero(lt(o, replacementLength)) { break } } result := add(result, replacementLength) subject := add(subject, searchLength) if searchLength { if iszero(lt(subject, subjectSearchEnd)) { break } continue } } mstore(result, t) result := add(result, 1) subject := add(subject, 1) if iszero(lt(subject, subjectSearchEnd)) { break } } } let resultRemainder := result result := add(mload(0x40), 0x20) let k := add(sub(resultRemainder, result), sub(subjectEnd, subject)) // Copy the rest of the string one word at a time. for {} lt(subject, subjectEnd) {} { mstore(resultRemainder, mload(subject)) resultRemainder := add(resultRemainder, 0x20) subject := add(subject, 0x20) } result := sub(result, 0x20) let last := add(add(result, 0x20), k) // Zeroize the slot after the string. mstore(last, 0) mstore(0x40, add(last, 0x20)) // Allocate the memory. mstore(result, k) // Store the length. } } /// @dev Returns the byte index of the first location of `search` in `subject`, /// searching from left to right, starting from `from`. /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found. function indexOf(string memory subject, string memory search, uint256 from) internal pure returns (uint256 result) { /// @solidity memory-safe-assembly assembly { for { let subjectLength := mload(subject) } 1 {} { if iszero(mload(search)) { if iszero(gt(from, subjectLength)) { result := from break } result := subjectLength break } let searchLength := mload(search) let subjectStart := add(subject, 0x20) result := not(0) // Initialize to `NOT_FOUND`. subject := add(subjectStart, from) let end := add(sub(add(subjectStart, subjectLength), searchLength), 1) let m := shl(3, sub(0x20, and(searchLength, 0x1f))) let s := mload(add(search, 0x20)) if iszero(and(lt(subject, end), lt(from, subjectLength))) { break } if iszero(lt(searchLength, 0x20)) { for { let h := keccak256(add(search, 0x20), searchLength) } 1 {} { if iszero(shr(m, xor(mload(subject), s))) { if eq(keccak256(subject, searchLength), h) { result := sub(subject, subjectStart) break } } subject := add(subject, 1) if iszero(lt(subject, end)) { break } } break } for {} 1 {} { if iszero(shr(m, xor(mload(subject), s))) { result := sub(subject, subjectStart) break } subject := add(subject, 1) if iszero(lt(subject, end)) { break } } break } } } /// @dev Returns the byte index of the first location of `search` in `subject`, /// searching from left to right. /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found. function indexOf(string memory subject, string memory search) internal pure returns (uint256 result) { result = indexOf(subject, search, 0); } /// @dev Returns the byte index of the first location of `search` in `subject`, /// searching from right to left, starting from `from`. /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found. function lastIndexOf(string memory subject, string memory search, uint256 from) internal pure returns (uint256 result) { /// @solidity memory-safe-assembly assembly { for {} 1 {} { result := not(0) // Initialize to `NOT_FOUND`. let searchLength := mload(search) if gt(searchLength, mload(subject)) { break } let w := result let fromMax := sub(mload(subject), searchLength) if iszero(gt(fromMax, from)) { from := fromMax } let end := add(add(subject, 0x20), w) subject := add(add(subject, 0x20), from) if iszero(gt(subject, end)) { break } // As this function is not too often used, // we shall simply use keccak256 for smaller bytecode size. for { let h := keccak256(add(search, 0x20), searchLength) } 1 {} { if eq(keccak256(subject, searchLength), h) { result := sub(subject, add(end, 1)) break } subject := add(subject, w) // `sub(subject, 1)`. if iszero(gt(subject, end)) { break } } break } } } /// @dev Returns the byte index of the first location of `search` in `subject`, /// searching from right to left. /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found. function lastIndexOf(string memory subject, string memory search) internal pure returns (uint256 result) { result = lastIndexOf(subject, search, uint256(int256(-1))); } /// @dev Returns true if `search` is found in `subject`, false otherwise. function contains(string memory subject, string memory search) internal pure returns (bool) { return indexOf(subject, search) != NOT_FOUND; } /// @dev Returns whether `subject` starts with `search`. function startsWith(string memory subject, string memory search) internal pure returns (bool result) { /// @solidity memory-safe-assembly assembly { let searchLength := mload(search) // Just using keccak256 directly is actually cheaper. // forgefmt: disable-next-item result := and( iszero(gt(searchLength, mload(subject))), eq( keccak256(add(subject, 0x20), searchLength), keccak256(add(search, 0x20), searchLength) ) ) } } /// @dev Returns whether `subject` ends with `search`. function endsWith(string memory subject, string memory search) internal pure returns (bool result) { /// @solidity memory-safe-assembly assembly { let searchLength := mload(search) let subjectLength := mload(subject) // Whether `search` is not longer than `subject`. let withinRange := iszero(gt(searchLength, subjectLength)) // Just using keccak256 directly is actually cheaper. // forgefmt: disable-next-item result := and( withinRange, eq( keccak256( // `subject + 0x20 + max(subjectLength - searchLength, 0)`. add(add(subject, 0x20), mul(withinRange, sub(subjectLength, searchLength))), searchLength ), keccak256(add(search, 0x20), searchLength) ) ) } } /// @dev Returns `subject` repeated `times`. function repeat(string memory subject, uint256 times) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { let subjectLength := mload(subject) if iszero(or(iszero(times), iszero(subjectLength))) { subject := add(subject, 0x20) result := mload(0x40) let output := add(result, 0x20) for {} 1 {} { // Copy the `subject` one word at a time. for { let o := 0 } 1 {} { mstore(add(output, o), mload(add(subject, o))) o := add(o, 0x20) if iszero(lt(o, subjectLength)) { break } } output := add(output, subjectLength) times := sub(times, 1) if iszero(times) { break } } mstore(output, 0) // Zeroize the slot after the string. let resultLength := sub(output, add(result, 0x20)) mstore(result, resultLength) // Store the length. // Allocate the memory. mstore(0x40, add(result, add(resultLength, 0x20))) } } } /// @dev Returns a copy of `subject` sliced from `start` to `end` (exclusive). /// `start` and `end` are byte offsets. function slice(string memory subject, uint256 start, uint256 end) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { let subjectLength := mload(subject) if iszero(gt(subjectLength, end)) { end := subjectLength } if iszero(gt(subjectLength, start)) { start := subjectLength } if lt(start, end) { result := mload(0x40) let resultLength := sub(end, start) mstore(result, resultLength) subject := add(subject, start) let w := not(0x1f) // Copy the `subject` one word at a time, backwards. for { let o := and(add(resultLength, 0x1f), w) } 1 {} { mstore(add(result, o), mload(add(subject, o))) o := add(o, w) // `sub(o, 0x20)`. if iszero(o) { break } } // Zeroize the slot after the string. mstore(add(add(result, 0x20), resultLength), 0) // Allocate memory for the length and the bytes, // rounded up to a multiple of 32. mstore(0x40, add(result, and(add(resultLength, 0x3f), w))) } } } /// @dev Returns a copy of `subject` sliced from `start` to the end of the string. /// `start` is a byte offset. function slice(string memory subject, uint256 start) internal pure returns (string memory result) { result = slice(subject, start, uint256(int256(-1))); } /// @dev Returns all the indices of `search` in `subject`. /// The indices are byte offsets. function indicesOf(string memory subject, string memory search) internal pure returns (uint256[] memory result) { /// @solidity memory-safe-assembly assembly { let subjectLength := mload(subject) let searchLength := mload(search) if iszero(gt(searchLength, subjectLength)) { subject := add(subject, 0x20) search := add(search, 0x20) result := add(mload(0x40), 0x20) let subjectStart := subject let subjectSearchEnd := add(sub(add(subject, subjectLength), searchLength), 1) let h := 0 if iszero(lt(searchLength, 0x20)) { h := keccak256(search, searchLength) } let m := shl(3, sub(0x20, and(searchLength, 0x1f))) let s := mload(search) for {} 1 {} { let t := mload(subject) // Whether the first `searchLength % 32` bytes of // `subject` and `search` matches. if iszero(shr(m, xor(t, s))) { if h { if iszero(eq(keccak256(subject, searchLength), h)) { subject := add(subject, 1) if iszero(lt(subject, subjectSearchEnd)) { break } continue } } // Append to `result`. mstore(result, sub(subject, subjectStart)) result := add(result, 0x20) // Advance `subject` by `searchLength`. subject := add(subject, searchLength) if searchLength { if iszero(lt(subject, subjectSearchEnd)) { break } continue } } subject := add(subject, 1) if iszero(lt(subject, subjectSearchEnd)) { break } } let resultEnd := result // Assign `result` to the free memory pointer. result := mload(0x40) // Store the length of `result`. mstore(result, shr(5, sub(resultEnd, add(result, 0x20)))) // Allocate memory for result. // We allocate one more word, so this array can be recycled for {split}. mstore(0x40, add(resultEnd, 0x20)) } } } /// @dev Returns a arrays of strings based on the `delimiter` inside of the `subject` string. function split(string memory subject, string memory delimiter) internal pure returns (string[] memory result) { uint256[] memory indices = indicesOf(subject, delimiter); /// @solidity memory-safe-assembly assembly { let w := not(0x1f) let indexPtr := add(indices, 0x20) let indicesEnd := add(indexPtr, shl(5, add(mload(indices), 1))) mstore(add(indicesEnd, w), mload(subject)) mstore(indices, add(mload(indices), 1)) let prevIndex := 0 for {} 1 {} { let index := mload(indexPtr) mstore(indexPtr, 0x60) if iszero(eq(index, prevIndex)) { let element := mload(0x40) let elementLength := sub(index, prevIndex) mstore(element, elementLength) // Copy the `subject` one word at a time, backwards. for { let o := and(add(elementLength, 0x1f), w) } 1 {} { mstore(add(element, o), mload(add(add(subject, prevIndex), o))) o := add(o, w) // `sub(o, 0x20)`. if iszero(o) { break } } // Zeroize the slot after the string. mstore(add(add(element, 0x20), elementLength), 0) // Allocate memory for the length and the bytes, // rounded up to a multiple of 32. mstore(0x40, add(element, and(add(elementLength, 0x3f), w))) // Store the `element` into the array. mstore(indexPtr, element) } prevIndex := add(index, mload(delimiter)) indexPtr := add(indexPtr, 0x20) if iszero(lt(indexPtr, indicesEnd)) { break } } result := indices if iszero(mload(delimiter)) { result := add(indices, 0x20) mstore(result, sub(mload(indices), 2)) } } } /// @dev Returns a concatenated string of `a` and `b`. /// Cheaper than `string.concat()` and does not de-align the free memory pointer. function concat(string memory a, string memory b) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { let w := not(0x1f) result := mload(0x40) let aLength := mload(a) // Copy `a` one word at a time, backwards. for { let o := and(add(aLength, 0x20), w) } 1 {} { mstore(add(result, o), mload(add(a, o))) o := add(o, w) // `sub(o, 0x20)`. if iszero(o) { break } } let bLength := mload(b) let output := add(result, aLength) // Copy `b` one word at a time, backwards. for { let o := and(add(bLength, 0x20), w) } 1 {} { mstore(add(output, o), mload(add(b, o))) o := add(o, w) // `sub(o, 0x20)`. if iszero(o) { break } } let totalLength := add(aLength, bLength) let last := add(add(result, 0x20), totalLength) // Zeroize the slot after the string. mstore(last, 0) // Stores the length. mstore(result, totalLength) // Allocate memory for the length and the bytes, // rounded up to a multiple of 32. mstore(0x40, and(add(last, 0x1f), w)) } } /// @dev Returns a copy of the string in either lowercase or UPPERCASE. /// WARNING! This function is only compatible with 7-bit ASCII strings. function toCase(string memory subject, bool toUpper) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { let length := mload(subject) if length { result := add(mload(0x40), 0x20) subject := add(subject, 1) let flags := shl(add(70, shl(5, toUpper)), 0x3ffffff) let w := not(0) for { let o := length } 1 {} { o := add(o, w) let b := and(0xff, mload(add(subject, o))) mstore8(add(result, o), xor(b, and(shr(b, flags), 0x20))) if iszero(o) { break } } result := mload(0x40) mstore(result, length) // Store the length. let last := add(add(result, 0x20), length) mstore(last, 0) // Zeroize the slot after the string. mstore(0x40, add(last, 0x20)) // Allocate the memory. } } } /// @dev Returns a string from a small bytes32 string. /// `s` must be null-terminated, or behavior will be undefined. function fromSmallString(bytes32 s) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { result := mload(0x40) let n := 0 for {} byte(n, s) { n := add(n, 1) } {} // Scan for '\0'. mstore(result, n) let o := add(result, 0x20) mstore(o, s) mstore(add(o, n), 0) mstore(0x40, add(result, 0x40)) } } /// @dev Returns the small string, with all bytes after the first null byte zeroized. function normalizeSmallString(bytes32 s) internal pure returns (bytes32 result) { /// @solidity memory-safe-assembly assembly { for {} byte(result, s) { result := add(result, 1) } {} // Scan for '\0'. mstore(0x00, s) mstore(result, 0x00) result := mload(0x00) } } /// @dev Returns the string as a normalized null-terminated small string. function toSmallString(string memory s) internal pure returns (bytes32 result) { /// @solidity memory-safe-assembly assembly { result := mload(s) if iszero(lt(result, 33)) { mstore(0x00, 0xec92f9a3) // `TooBigForSmallString()`. revert(0x1c, 0x04) } result := shl(shl(3, sub(32, result)), mload(add(s, result))) } } /// @dev Returns a lowercased copy of the string. /// WARNING! This function is only compatible with 7-bit ASCII strings. function lower(string memory subject) internal pure returns (string memory result) { result = toCase(subject, false); } /// @dev Returns an UPPERCASED copy of the string. /// WARNING! This function is only compatible with 7-bit ASCII strings. function upper(string memory subject) internal pure returns (string memory result) { result = toCase(subject, true); } /// @dev Escapes the string to be used within HTML tags. function escapeHTML(string memory s) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { let end := add(s, mload(s)) result := add(mload(0x40), 0x20) // Store the bytes of the packed offsets and strides into the scratch space. // `packed = (stride << 5) | offset`. Max offset is 20. Max stride is 6. mstore(0x1f, 0x900094) mstore(0x08, 0xc0000000a6ab) // Store ""&'<>" into the scratch space. mstore(0x00, shl(64, 0x2671756f743b26616d703b262333393b266c743b2667743b)) for {} iszero(eq(s, end)) {} { s := add(s, 1) let c := and(mload(s), 0xff) // Not in `["\"","'","&","<",">"]`. if iszero(and(shl(c, 1), 0x500000c400000000)) { mstore8(result, c) result := add(result, 1) continue } let t := shr(248, mload(c)) mstore(result, mload(and(t, 0x1f))) result := add(result, shr(5, t)) } let last := result mstore(last, 0) // Zeroize the slot after the string. result := mload(0x40) mstore(result, sub(last, add(result, 0x20))) // Store the length. mstore(0x40, add(last, 0x20)) // Allocate the memory. } } /// @dev Escapes the string to be used within double-quotes in a JSON. /// If `addDoubleQuotes` is true, the result will be enclosed in double-quotes. function escapeJSON(string memory s, bool addDoubleQuotes) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { let end := add(s, mload(s)) result := add(mload(0x40), 0x20) if addDoubleQuotes { mstore8(result, 34) result := add(1, result) } // Store "\\u0000" in scratch space. // Store "0123456789abcdef" in scratch space. // Also, store `{0x08:"b", 0x09:"t", 0x0a:"n", 0x0c:"f", 0x0d:"r"}`. // into the scratch space. mstore(0x15, 0x5c75303030303031323334353637383961626364656662746e006672) // Bitmask for detecting `["\"","\\"]`. let e := or(shl(0x22, 1), shl(0x5c, 1)) for {} iszero(eq(s, end)) {} { s := add(s, 1) let c := and(mload(s), 0xff) if iszero(lt(c, 0x20)) { if iszero(and(shl(c, 1), e)) { // Not in `["\"","\\"]`. mstore8(result, c) result := add(result, 1) continue } mstore8(result, 0x5c) // "\\". mstore8(add(result, 1), c) result := add(result, 2) continue } if iszero(and(shl(c, 1), 0x3700)) { // Not in `["\b","\t","\n","\f","\d"]`. mstore8(0x1d, mload(shr(4, c))) // Hex value. mstore8(0x1e, mload(and(c, 15))) // Hex value. mstore(result, mload(0x19)) // "\\u00XX". result := add(result, 6) continue } mstore8(result, 0x5c) // "\\". mstore8(add(result, 1), mload(add(c, 8))) result := add(result, 2) } if addDoubleQuotes { mstore8(result, 34) result := add(1, result) } let last := result mstore(last, 0) // Zeroize the slot after the string. result := mload(0x40) mstore(result, sub(last, add(result, 0x20))) // Store the length. mstore(0x40, add(last, 0x20)) // Allocate the memory. } } /// @dev Escapes the string to be used within double-quotes in a JSON. function escapeJSON(string memory s) internal pure returns (string memory result) { result = escapeJSON(s, false); } /// @dev Returns whether `a` equals `b`. function eq(string memory a, string memory b) internal pure returns (bool result) { /// @solidity memory-safe-assembly assembly { result := eq(keccak256(add(a, 0x20), mload(a)), keccak256(add(b, 0x20), mload(b))) } } /// @dev Returns whether `a` equals `b`, where `b` is a null-terminated small string. function eqs(string memory a, bytes32 b) internal pure returns (bool result) { /// @solidity memory-safe-assembly assembly { // These should be evaluated on compile time, as far as possible. let m := not(shl(7, div(not(iszero(b)), 255))) // `0x7f7f ...`. let x := not(or(m, or(b, add(m, and(b, m))))) let r := shl(7, iszero(iszero(shr(128, x)))) r := or(r, shl(6, iszero(iszero(shr(64, shr(r, x)))))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(r, shl(3, lt(0xff, shr(r, x)))) // forgefmt: disable-next-item result := gt(eq(mload(a), add(iszero(x), xor(31, shr(3, r)))), xor(shr(add(8, r), b), shr(add(8, r), mload(add(a, 0x20))))) } } /// @dev Packs a single string with its length into a single word. /// Returns `bytes32(0)` if the length is zero or greater than 31. function packOne(string memory a) internal pure returns (bytes32 result) { /// @solidity memory-safe-assembly assembly { // We don't need to zero right pad the string, // since this is our own custom non-standard packing scheme. result := mul( // Load the length and the bytes. mload(add(a, 0x1f)), // `length != 0 && length < 32`. Abuses underflow. // Assumes that the length is valid and within the block gas limit. lt(sub(mload(a), 1), 0x1f) ) } } /// @dev Unpacks a string packed using {packOne}. /// Returns the empty string if `packed` is `bytes32(0)`. /// If `packed` is not an output of {packOne}, the output behavior is undefined. function unpackOne(bytes32 packed) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { // Grab the free memory pointer. result := mload(0x40) // Allocate 2 words (1 for the length, 1 for the bytes). mstore(0x40, add(result, 0x40)) // Zeroize the length slot. mstore(result, 0) // Store the length and bytes. mstore(add(result, 0x1f), packed) // Right pad with zeroes. mstore(add(add(result, 0x20), mload(result)), 0) } } /// @dev Packs two strings with their lengths into a single word. /// Returns `bytes32(0)` if combined length is zero or greater than 30. function packTwo(string memory a, string memory b) internal pure returns (bytes32 result) { /// @solidity memory-safe-assembly assembly { let aLength := mload(a) // We don't need to zero right pad the strings, // since this is our own custom non-standard packing scheme. result := mul( // Load the length and the bytes of `a` and `b`. or( shl(shl(3, sub(0x1f, aLength)), mload(add(a, aLength))), mload(sub(add(b, 0x1e), aLength)) ), // `totalLength != 0 && totalLength < 31`. Abuses underflow. // Assumes that the lengths are valid and within the block gas limit. lt(sub(add(aLength, mload(b)), 1), 0x1e) ) } } /// @dev Unpacks strings packed using {packTwo}. /// Returns the empty strings if `packed` is `bytes32(0)`. /// If `packed` is not an output of {packTwo}, the output behavior is undefined. function unpackTwo(bytes32 packed) internal pure returns (string memory resultA, string memory resultB) { /// @solidity memory-safe-assembly assembly { // Grab the free memory pointer. resultA := mload(0x40) resultB := add(resultA, 0x40) // Allocate 2 words for each string (1 for the length, 1 for the byte). Total 4 words. mstore(0x40, add(resultB, 0x40)) // Zeroize the length slots. mstore(resultA, 0) mstore(resultB, 0) // Store the lengths and bytes. mstore(add(resultA, 0x1f), packed) mstore(add(resultB, 0x1f), mload(add(add(resultA, 0x20), mload(resultA)))) // Right pad with zeroes. mstore(add(add(resultA, 0x20), mload(resultA)), 0) mstore(add(add(resultB, 0x20), mload(resultB)), 0) } } /// @dev Directly returns `a` without copying. function directReturn(string memory a) internal pure { assembly { // Assumes that the string does not start from the scratch space. let retStart := sub(a, 0x20) let retSize := add(mload(a), 0x40) // Right pad with zeroes. Just in case the string is produced // by a method that doesn't zero right pad. mstore(add(retStart, retSize), 0) // Store the return offset. mstore(retStart, 0x20) // End the transaction, returning the string. return(retStart, retSize) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library AddressUpgradeable { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.0; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a >= b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.0; /// @notice Arithmetic library with operations for fixed-point numbers. /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol) library FixedPointMathLib { /*////////////////////////////////////////////////////////////// SIMPLIFIED FIXED POINT OPERATIONS //////////////////////////////////////////////////////////////*/ uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s. function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down. } function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up. } function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down. } function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up. } function powWad(int256 x, int256 y) internal pure returns (int256) { // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y) return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0. } function expWad(int256 x) internal pure returns (int256 r) { unchecked { // When the result is < 0.5 we return zero. This happens when // x <= floor(log(0.5e18) * 1e18) ~ -42e18 if (x <= -42139678854452767551) return 0; // When the result is > (2**255 - 1) / 1e18 we can not represent it as an // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135. if (x >= 135305999368893231589) revert("EXP_OVERFLOW"); // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96 // for more intermediate precision and a binary basis. This base conversion // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78. x = (x << 78) / 5**18; // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers // of two such that exp(x) = exp(x') * 2**k, where k is an integer. // Solving this gives k = round(x / log(2)) and x' = x - k * log(2). int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96; x = x - k * 54916777467707473351141471128; // k is in the range [-61, 195]. // Evaluate using a (6, 7)-term rational approximation. // p is made monic, we'll multiply by a scale factor later. int256 y = x + 1346386616545796478920950773328; y = ((y * x) >> 96) + 57155421227552351082224309758442; int256 p = y + x - 94201549194550492254356042504812; p = ((p * y) >> 96) + 28719021644029726153956944680412240; p = p * x + (4385272521454847904659076985693276 << 96); // We leave p in 2**192 basis so we don't need to scale it back up for the division. int256 q = x - 2855989394907223263936484059900; q = ((q * x) >> 96) + 50020603652535783019961831881945; q = ((q * x) >> 96) - 533845033583426703283633433725380; q = ((q * x) >> 96) + 3604857256930695427073651918091429; q = ((q * x) >> 96) - 14423608567350463180887372962807573; q = ((q * x) >> 96) + 26449188498355588339934803723976023; assembly { // Div in assembly because solidity adds a zero check despite the unchecked. // The q polynomial won't have zeros in the domain as all its roots are complex. // No scaling is necessary because p is already 2**96 too large. r := sdiv(p, q) } // r should be in the range (0.09, 0.25) * 2**96. // We now need to multiply r by: // * the scale factor s = ~6.031367120. // * the 2**k factor from the range reduction. // * the 1e18 / 2**96 factor for base conversion. // We do this all at once, with an intermediate result in 2**213 // basis, so the final right shift is always by a positive amount. r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k)); } } function lnWad(int256 x) internal pure returns (int256 r) { unchecked { require(x > 0, "UNDEFINED"); // We want to convert x from 10**18 fixed point to 2**96 fixed point. // We do this by multiplying by 2**96 / 10**18. But since // ln(x * C) = ln(x) + ln(C), we can simply do nothing here // and add ln(2**96 / 10**18) at the end. // Reduce range of x to (1, 2) * 2**96 // ln(2^k * x) = k * ln(2) + ln(x) int256 k = int256(log2(uint256(x))) - 96; x <<= uint256(159 - k); x = int256(uint256(x) >> 159); // Evaluate using a (8, 8)-term rational approximation. // p is made monic, we will multiply by a scale factor later. int256 p = x + 3273285459638523848632254066296; p = ((p * x) >> 96) + 24828157081833163892658089445524; p = ((p * x) >> 96) + 43456485725739037958740375743393; p = ((p * x) >> 96) - 11111509109440967052023855526967; p = ((p * x) >> 96) - 45023709667254063763336534515857; p = ((p * x) >> 96) - 14706773417378608786704636184526; p = p * x - (795164235651350426258249787498 << 96); // We leave p in 2**192 basis so we don't need to scale it back up for the division. // q is monic by convention. int256 q = x + 5573035233440673466300451813936; q = ((q * x) >> 96) + 71694874799317883764090561454958; q = ((q * x) >> 96) + 283447036172924575727196451306956; q = ((q * x) >> 96) + 401686690394027663651624208769553; q = ((q * x) >> 96) + 204048457590392012362485061816622; q = ((q * x) >> 96) + 31853899698501571402653359427138; q = ((q * x) >> 96) + 909429971244387300277376558375; assembly { // Div in assembly because solidity adds a zero check despite the unchecked. // The q polynomial is known not to have zeros in the domain. // No scaling required because p is already 2**96 too large. r := sdiv(p, q) } // r is in the range (0, 0.125) * 2**96 // Finalization, we need to: // * multiply by the scale factor s = 5.549… // * add ln(2**96 / 10**18) // * add k * ln(2) // * multiply by 10**18 / 2**96 = 5**18 >> 78 // mul s * 5e18 * 2**96, base is now 5**18 * 2**192 r *= 1677202110996718588342820967067443963516166; // add ln(2) * k * 5e18 * 2**192 r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k; // add ln(2**96 / 10**18) * 5e18 * 2**192 r += 600920179829731861736702779321621459595472258049074101567377883020018308; // base conversion: mul 2**18 / 2**192 r >>= 174; } } /*////////////////////////////////////////////////////////////// LOW LEVEL FIXED POINT OPERATIONS //////////////////////////////////////////////////////////////*/ function mulDivDown( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 z) { assembly { // Store x * y in z for now. z := mul(x, y) // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y)) if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) { revert(0, 0) } // Divide z by the denominator. z := div(z, denominator) } } function mulDivUp( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 z) { assembly { // Store x * y in z for now. z := mul(x, y) // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y)) if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) { revert(0, 0) } // First, divide z - 1 by the denominator and add 1. // We allow z - 1 to underflow if z is 0, because we multiply the // end result by 0 if z is zero, ensuring we return 0 if z is zero. z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1)) } } function rpow( uint256 x, uint256 n, uint256 scalar ) internal pure returns (uint256 z) { assembly { switch x case 0 { switch n case 0 { // 0 ** 0 = 1 z := scalar } default { // 0 ** n = 0 z := 0 } } default { switch mod(n, 2) case 0 { // If n is even, store scalar in z for now. z := scalar } default { // If n is odd, store x in z for now. z := x } // Shifting right by 1 is like dividing by 2. let half := shr(1, scalar) for { // Shift n right by 1 before looping to halve it. n := shr(1, n) } n { // Shift n right by 1 each iteration to halve it. n := shr(1, n) } { // Revert immediately if x ** 2 would overflow. // Equivalent to iszero(eq(div(xx, x), x)) here. if shr(128, x) { revert(0, 0) } // Store x squared. let xx := mul(x, x) // Round to the nearest number. let xxRound := add(xx, half) // Revert if xx + half overflowed. if lt(xxRound, xx) { revert(0, 0) } // Set x to scaled xxRound. x := div(xxRound, scalar) // If n is even: if mod(n, 2) { // Compute z * x. let zx := mul(z, x) // If z * x overflowed: if iszero(eq(div(zx, x), z)) { // Revert if x is non-zero. if iszero(iszero(x)) { revert(0, 0) } } // Round to the nearest number. let zxRound := add(zx, half) // Revert if zx + half overflowed. if lt(zxRound, zx) { revert(0, 0) } // Return properly scaled zxRound. z := div(zxRound, scalar) } } } } } /*////////////////////////////////////////////////////////////// GENERAL NUMBER UTILITIES //////////////////////////////////////////////////////////////*/ function sqrt(uint256 x) internal pure returns (uint256 z) { assembly { let y := x // We start y at x, which will help us make our initial estimate. z := 181 // The "correct" value is 1, but this saves a multiplication later. // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically. // We check y >= 2^(k + 8) but shift right by k bits // each branch to ensure that if x >= 256, then y >= 256. if iszero(lt(y, 0x10000000000000000000000000000000000)) { y := shr(128, y) z := shl(64, z) } if iszero(lt(y, 0x1000000000000000000)) { y := shr(64, y) z := shl(32, z) } if iszero(lt(y, 0x10000000000)) { y := shr(32, y) z := shl(16, z) } if iszero(lt(y, 0x1000000)) { y := shr(16, y) z := shl(8, z) } // Goal was to get z*z*y within a small factor of x. More iterations could // get y in a tighter range. Currently, we will have y in [256, 256*2^16). // We ensured y >= 256 so that the relative difference between y and y+1 is small. // That's not possible if x < 256 but we can just verify those cases exhaustively. // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256. // Correctness can be checked exhaustively for x < 256, so we assume y >= 256. // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps. // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256. // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18. // There is no overflow risk here since y < 2^136 after the first branch above. z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181. // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough. z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) // If x+1 is a perfect square, the Babylonian method cycles between // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor. // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case. // If you don't care whether the floor or ceil square root is returned, you can remove this statement. z := sub(z, lt(div(x, z), z)) } } function log2(uint256 x) internal pure returns (uint256 r) { require(x > 0, "UNDEFINED"); assembly { r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(r, shl(3, lt(0xff, shr(r, x)))) r := or(r, shl(2, lt(0xf, shr(r, x)))) r := or(r, shl(1, lt(0x3, shr(r, x)))) r := or(r, lt(0x1, shr(r, x))) } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { Types } from "src/libraries/Types.sol"; import { Hashing } from "src/libraries/Hashing.sol"; import { RLPWriter } from "src/libraries/rlp/RLPWriter.sol"; /// @title Encoding /// @notice Encoding handles Optimism's various different encoding schemes. library Encoding { /// @notice RLP encodes the L2 transaction that would be generated when a given deposit is sent /// to the L2 system. Useful for searching for a deposit in the L2 system. The /// transaction is prefixed with 0x7e to identify its EIP-2718 type. /// @param _tx User deposit transaction to encode. /// @return RLP encoded L2 deposit transaction. function encodeDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes memory) { bytes32 source = Hashing.hashDepositSource(_tx.l1BlockHash, _tx.logIndex); bytes[] memory raw = new bytes[](8); raw[0] = RLPWriter.writeBytes(abi.encodePacked(source)); raw[1] = RLPWriter.writeAddress(_tx.from); raw[2] = _tx.isCreation ? RLPWriter.writeBytes("") : RLPWriter.writeAddress(_tx.to); raw[3] = RLPWriter.writeUint(_tx.mint); raw[4] = RLPWriter.writeUint(_tx.value); raw[5] = RLPWriter.writeUint(uint256(_tx.gasLimit)); raw[6] = RLPWriter.writeBool(false); raw[7] = RLPWriter.writeBytes(_tx.data); return abi.encodePacked(uint8(0x7e), RLPWriter.writeList(raw)); } /// @notice Encodes the cross domain message based on the version that is encoded into the /// message nonce. /// @param _nonce Message nonce with version encoded into the first two bytes. /// @param _sender Address of the sender of the message. /// @param _target Address of the target of the message. /// @param _value ETH value to send to the target. /// @param _gasLimit Gas limit to use for the message. /// @param _data Data to send with the message. /// @return Encoded cross domain message. function encodeCrossDomainMessage( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _gasLimit, bytes memory _data ) internal pure returns (bytes memory) { (, uint16 version) = decodeVersionedNonce(_nonce); if (version == 0) { return encodeCrossDomainMessageV0(_target, _sender, _data, _nonce); } else if (version == 1) { return encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data); } else { revert("Encoding: unknown cross domain message version"); } } /// @notice Encodes a cross domain message based on the V0 (legacy) encoding. /// @param _target Address of the target of the message. /// @param _sender Address of the sender of the message. /// @param _data Data to send with the message. /// @param _nonce Message nonce. /// @return Encoded cross domain message. function encodeCrossDomainMessageV0( address _target, address _sender, bytes memory _data, uint256 _nonce ) internal pure returns (bytes memory) { return abi.encodeWithSignature("relayMessage(address,address,bytes,uint256)", _target, _sender, _data, _nonce); } /// @notice Encodes a cross domain message based on the V1 (current) encoding. /// @param _nonce Message nonce. /// @param _sender Address of the sender of the message. /// @param _target Address of the target of the message. /// @param _value ETH value to send to the target. /// @param _gasLimit Gas limit to use for the message. /// @param _data Data to send with the message. /// @return Encoded cross domain message. function encodeCrossDomainMessageV1( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _gasLimit, bytes memory _data ) internal pure returns (bytes memory) { return abi.encodeWithSignature( "relayMessage(uint256,address,address,uint256,uint256,bytes)", _nonce, _sender, _target, _value, _gasLimit, _data ); } /// @notice Adds a version number into the first two bytes of a message nonce. /// @param _nonce Message nonce to encode into. /// @param _version Version number to encode into the message nonce. /// @return Message nonce with version encoded into the first two bytes. function encodeVersionedNonce(uint240 _nonce, uint16 _version) internal pure returns (uint256) { uint256 nonce; assembly { nonce := or(shl(240, _version), _nonce) } return nonce; } /// @notice Pulls the version out of a version-encoded nonce. /// @param _nonce Message nonce with version encoded into the first two bytes. /// @return Nonce without encoded version. /// @return Version of the message. function decodeVersionedNonce(uint256 _nonce) internal pure returns (uint240, uint16) { uint240 nonce; uint16 version; assembly { nonce := and(_nonce, 0x0000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff) version := shr(240, _nonce) } return (nonce, version); } /// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesEcotone /// @param baseFeeScalar L1 base fee Scalar /// @param blobBaseFeeScalar L1 blob base fee Scalar /// @param sequenceNumber Number of L2 blocks since epoch start. /// @param timestamp L1 timestamp. /// @param number L1 blocknumber. /// @param baseFee L1 base fee. /// @param blobBaseFee L1 blob base fee. /// @param hash L1 blockhash. /// @param batcherHash Versioned hash to authenticate batcher by. function encodeSetL1BlockValuesEcotone( uint32 baseFeeScalar, uint32 blobBaseFeeScalar, uint64 sequenceNumber, uint64 timestamp, uint64 number, uint256 baseFee, uint256 blobBaseFee, bytes32 hash, bytes32 batcherHash ) internal pure returns (bytes memory) { bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesEcotone()")); return abi.encodePacked( functionSignature, baseFeeScalar, blobBaseFeeScalar, sequenceNumber, timestamp, number, baseFee, blobBaseFee, hash, batcherHash ); } /// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesInterop /// @param _baseFeeScalar L1 base fee Scalar /// @param _blobBaseFeeScalar L1 blob base fee Scalar /// @param _sequenceNumber Number of L2 blocks since epoch start. /// @param _timestamp L1 timestamp. /// @param _number L1 blocknumber. /// @param _baseFee L1 base fee. /// @param _blobBaseFee L1 blob base fee. /// @param _hash L1 blockhash. /// @param _batcherHash Versioned hash to authenticate batcher by. /// @param _dependencySet Array of the chain IDs in the interop dependency set. function encodeSetL1BlockValuesInterop( uint32 _baseFeeScalar, uint32 _blobBaseFeeScalar, uint64 _sequenceNumber, uint64 _timestamp, uint64 _number, uint256 _baseFee, uint256 _blobBaseFee, bytes32 _hash, bytes32 _batcherHash, uint256[] memory _dependencySet ) internal pure returns (bytes memory) { require(_dependencySet.length <= type(uint8).max, "Encoding: dependency set length is too large"); // Check that the batcher hash is just the address with 0 padding to the left for version 0. require(uint160(uint256(_batcherHash)) == uint256(_batcherHash), "Encoding: invalid batcher hash"); bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesInterop()")); return abi.encodePacked( functionSignature, _baseFeeScalar, _blobBaseFeeScalar, _sequenceNumber, _timestamp, _number, _baseFee, _blobBaseFee, _hash, _batcherHash, uint8(_dependencySet.length), _dependencySet ); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { Bytes } from "../Bytes.sol"; import { RLPReader } from "../rlp/RLPReader.sol"; /// @title MerkleTrie /// @notice MerkleTrie is a small library for verifying standard Ethereum Merkle-Patricia trie /// inclusion proofs. By default, this library assumes a hexary trie. One can change the /// trie radix constant to support other trie radixes. library MerkleTrie { /// @notice Struct representing a node in the trie. /// @custom:field encoded The RLP-encoded node. /// @custom:field decoded The RLP-decoded node. struct TrieNode { bytes encoded; RLPReader.RLPItem[] decoded; } /// @notice Determines the number of elements per branch node. uint256 internal constant TREE_RADIX = 16; /// @notice Branch nodes have TREE_RADIX elements and one value element. uint256 internal constant BRANCH_NODE_LENGTH = TREE_RADIX + 1; /// @notice Leaf nodes and extension nodes have two elements, a `path` and a `value`. uint256 internal constant LEAF_OR_EXTENSION_NODE_LENGTH = 2; /// @notice Prefix for even-nibbled extension node paths. uint8 internal constant PREFIX_EXTENSION_EVEN = 0; /// @notice Prefix for odd-nibbled extension node paths. uint8 internal constant PREFIX_EXTENSION_ODD = 1; /// @notice Prefix for even-nibbled leaf node paths. uint8 internal constant PREFIX_LEAF_EVEN = 2; /// @notice Prefix for odd-nibbled leaf node paths. uint8 internal constant PREFIX_LEAF_ODD = 3; /// @notice Verifies a proof that a given key/value pair is present in the trie. /// @param _key Key of the node to search for, as a hex string. /// @param _value Value of the node to search for, as a hex string. /// @param _proof Merkle trie inclusion proof for the desired node. Unlike traditional Merkle /// trees, this proof is executed top-down and consists of a list of RLP-encoded /// nodes that make a path down to the target node. /// @param _root Known root of the Merkle trie. Used to verify that the included proof is /// correctly constructed. /// @return valid_ Whether or not the proof is valid. function verifyInclusionProof( bytes memory _key, bytes memory _value, bytes[] memory _proof, bytes32 _root ) internal pure returns (bool valid_) { valid_ = Bytes.equal(_value, get(_key, _proof, _root)); } /// @notice Retrieves the value associated with a given key. /// @param _key Key to search for, as hex bytes. /// @param _proof Merkle trie inclusion proof for the key. /// @param _root Known root of the Merkle trie. /// @return value_ Value of the key if it exists. function get(bytes memory _key, bytes[] memory _proof, bytes32 _root) internal pure returns (bytes memory value_) { require(_key.length > 0, "MerkleTrie: empty key"); TrieNode[] memory proof = _parseProof(_proof); bytes memory key = Bytes.toNibbles(_key); bytes memory currentNodeID = abi.encodePacked(_root); uint256 currentKeyIndex = 0; // Proof is top-down, so we start at the first element (root). for (uint256 i = 0; i < proof.length; i++) { TrieNode memory currentNode = proof[i]; // Key index should never exceed total key length or we'll be out of bounds. require(currentKeyIndex <= key.length, "MerkleTrie: key index exceeds total key length"); if (currentKeyIndex == 0) { // First proof element is always the root node. require( Bytes.equal(abi.encodePacked(keccak256(currentNode.encoded)), currentNodeID), "MerkleTrie: invalid root hash" ); } else if (currentNode.encoded.length >= 32) { // Nodes 32 bytes or larger are hashed inside branch nodes. require( Bytes.equal(abi.encodePacked(keccak256(currentNode.encoded)), currentNodeID), "MerkleTrie: invalid large internal hash" ); } else { // Nodes smaller than 32 bytes aren't hashed. require(Bytes.equal(currentNode.encoded, currentNodeID), "MerkleTrie: invalid internal node hash"); } if (currentNode.decoded.length == BRANCH_NODE_LENGTH) { if (currentKeyIndex == key.length) { // Value is the last element of the decoded list (for branch nodes). There's // some ambiguity in the Merkle trie specification because bytes(0) is a // valid value to place into the trie, but for branch nodes bytes(0) can exist // even when the value wasn't explicitly placed there. Geth treats a value of // bytes(0) as "key does not exist" and so we do the same. value_ = RLPReader.readBytes(currentNode.decoded[TREE_RADIX]); require(value_.length > 0, "MerkleTrie: value length must be greater than zero (branch)"); // Extra proof elements are not allowed. require(i == proof.length - 1, "MerkleTrie: value node must be last node in proof (branch)"); return value_; } else { // We're not at the end of the key yet. // Figure out what the next node ID should be and continue. uint8 branchKey = uint8(key[currentKeyIndex]); RLPReader.RLPItem memory nextNode = currentNode.decoded[branchKey]; currentNodeID = _getNodeID(nextNode); currentKeyIndex += 1; } } else if (currentNode.decoded.length == LEAF_OR_EXTENSION_NODE_LENGTH) { bytes memory path = _getNodePath(currentNode); uint8 prefix = uint8(path[0]); uint8 offset = 2 - (prefix % 2); bytes memory pathRemainder = Bytes.slice(path, offset); bytes memory keyRemainder = Bytes.slice(key, currentKeyIndex); uint256 sharedNibbleLength = _getSharedNibbleLength(pathRemainder, keyRemainder); // Whether this is a leaf node or an extension node, the path remainder MUST be a // prefix of the key remainder (or be equal to the key remainder) or the proof is // considered invalid. require( pathRemainder.length == sharedNibbleLength, "MerkleTrie: path remainder must share all nibbles with key" ); if (prefix == PREFIX_LEAF_EVEN || prefix == PREFIX_LEAF_ODD) { // Prefix of 2 or 3 means this is a leaf node. For the leaf node to be valid, // the key remainder must be exactly equal to the path remainder. We already // did the necessary byte comparison, so it's more efficient here to check that // the key remainder length equals the shared nibble length, which implies // equality with the path remainder (since we already did the same check with // the path remainder and the shared nibble length). require( keyRemainder.length == sharedNibbleLength, "MerkleTrie: key remainder must be identical to path remainder" ); // Our Merkle Trie is designed specifically for the purposes of the Ethereum // state trie. Empty values are not allowed in the state trie, so we can safely // say that if the value is empty, the key should not exist and the proof is // invalid. value_ = RLPReader.readBytes(currentNode.decoded[1]); require(value_.length > 0, "MerkleTrie: value length must be greater than zero (leaf)"); // Extra proof elements are not allowed. require(i == proof.length - 1, "MerkleTrie: value node must be last node in proof (leaf)"); return value_; } else if (prefix == PREFIX_EXTENSION_EVEN || prefix == PREFIX_EXTENSION_ODD) { // Prefix of 0 or 1 means this is an extension node. We move onto the next node // in the proof and increment the key index by the length of the path remainder // which is equal to the shared nibble length. currentNodeID = _getNodeID(currentNode.decoded[1]); currentKeyIndex += sharedNibbleLength; } else { revert("MerkleTrie: received a node with an unknown prefix"); } } else { revert("MerkleTrie: received an unparseable node"); } } revert("MerkleTrie: ran out of proof elements"); } /// @notice Parses an array of proof elements into a new array that contains both the original /// encoded element and the RLP-decoded element. /// @param _proof Array of proof elements to parse. /// @return proof_ Proof parsed into easily accessible structs. function _parseProof(bytes[] memory _proof) private pure returns (TrieNode[] memory proof_) { uint256 length = _proof.length; proof_ = new TrieNode[](length); for (uint256 i = 0; i < length;) { proof_[i] = TrieNode({ encoded: _proof[i], decoded: RLPReader.readList(_proof[i]) }); unchecked { ++i; } } } /// @notice Picks out the ID for a node. Node ID is referred to as the "hash" within the /// specification, but nodes < 32 bytes are not actually hashed. /// @param _node Node to pull an ID for. /// @return id_ ID for the node, depending on the size of its contents. function _getNodeID(RLPReader.RLPItem memory _node) private pure returns (bytes memory id_) { id_ = _node.length < 32 ? RLPReader.readRawBytes(_node) : RLPReader.readBytes(_node); } /// @notice Gets the path for a leaf or extension node. /// @param _node Node to get a path for. /// @return nibbles_ Node path, converted to an array of nibbles. function _getNodePath(TrieNode memory _node) private pure returns (bytes memory nibbles_) { nibbles_ = Bytes.toNibbles(RLPReader.readBytes(_node.decoded[0])); } /// @notice Utility; determines the number of nibbles shared between two nibble arrays. /// @param _a First nibble array. /// @param _b Second nibble array. /// @return shared_ Number of shared nibbles. function _getSharedNibbleLength(bytes memory _a, bytes memory _b) private pure returns (uint256 shared_) { uint256 max = (_a.length < _b.length) ? _a.length : _b.length; for (; shared_ < max && _a[shared_] == _b[shared_];) { unchecked { ++shared_; } } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @custom:attribution https://github.com/bakaoh/solidity-rlp-encode /// @title RLPWriter /// @author RLPWriter is a library for encoding Solidity types to RLP bytes. Adapted from Bakaoh's /// RLPEncode library (https://github.com/bakaoh/solidity-rlp-encode) with minor /// modifications to improve legibility. library RLPWriter { /// @notice RLP encodes a byte string. /// @param _in The byte string to encode. /// @return out_ The RLP encoded string in bytes. function writeBytes(bytes memory _in) internal pure returns (bytes memory out_) { if (_in.length == 1 && uint8(_in[0]) < 128) { out_ = _in; } else { out_ = abi.encodePacked(_writeLength(_in.length, 128), _in); } } /// @notice RLP encodes a list of RLP encoded byte byte strings. /// @param _in The list of RLP encoded byte strings. /// @return list_ The RLP encoded list of items in bytes. function writeList(bytes[] memory _in) internal pure returns (bytes memory list_) { list_ = _flatten(_in); list_ = abi.encodePacked(_writeLength(list_.length, 192), list_); } /// @notice RLP encodes a string. /// @param _in The string to encode. /// @return out_ The RLP encoded string in bytes. function writeString(string memory _in) internal pure returns (bytes memory out_) { out_ = writeBytes(bytes(_in)); } /// @notice RLP encodes an address. /// @param _in The address to encode. /// @return out_ The RLP encoded address in bytes. function writeAddress(address _in) internal pure returns (bytes memory out_) { out_ = writeBytes(abi.encodePacked(_in)); } /// @notice RLP encodes a uint. /// @param _in The uint256 to encode. /// @return out_ The RLP encoded uint256 in bytes. function writeUint(uint256 _in) internal pure returns (bytes memory out_) { out_ = writeBytes(_toBinary(_in)); } /// @notice RLP encodes a bool. /// @param _in The bool to encode. /// @return out_ The RLP encoded bool in bytes. function writeBool(bool _in) internal pure returns (bytes memory out_) { out_ = new bytes(1); out_[0] = (_in ? bytes1(0x01) : bytes1(0x80)); } /// @notice Encode the first byte and then the `len` in binary form if `length` is more than 55. /// @param _len The length of the string or the payload. /// @param _offset 128 if item is string, 192 if item is list. /// @return out_ RLP encoded bytes. function _writeLength(uint256 _len, uint256 _offset) private pure returns (bytes memory out_) { if (_len < 56) { out_ = new bytes(1); out_[0] = bytes1(uint8(_len) + uint8(_offset)); } else { uint256 lenLen; uint256 i = 1; while (_len / i != 0) { lenLen++; i *= 256; } out_ = new bytes(lenLen + 1); out_[0] = bytes1(uint8(lenLen) + uint8(_offset) + 55); for (i = 1; i <= lenLen; i++) { out_[i] = bytes1(uint8((_len / (256 ** (lenLen - i))) % 256)); } } } /// @notice Encode integer in big endian binary form with no leading zeroes. /// @param _x The integer to encode. /// @return out_ RLP encoded bytes. function _toBinary(uint256 _x) private pure returns (bytes memory out_) { bytes memory b = abi.encodePacked(_x); uint256 i = 0; for (; i < 32; i++) { if (b[i] != 0) { break; } } out_ = new bytes(32 - i); for (uint256 j = 0; j < out_.length; j++) { out_[j] = b[i++]; } } /// @custom:attribution https://github.com/Arachnid/solidity-stringutils /// @notice Copies a piece of memory to another location. /// @param _dest Destination location. /// @param _src Source location. /// @param _len Length of memory to copy. function _memcpy(uint256 _dest, uint256 _src, uint256 _len) private pure { uint256 dest = _dest; uint256 src = _src; uint256 len = _len; for (; len >= 32; len -= 32) { assembly { mstore(dest, mload(src)) } dest += 32; src += 32; } uint256 mask; unchecked { mask = 256 ** (32 - len) - 1; } assembly { let srcpart := and(mload(src), not(mask)) let destpart := and(mload(dest), mask) mstore(dest, or(destpart, srcpart)) } } /// @custom:attribution https://github.com/sammayo/solidity-rlp-encoder /// @notice Flattens a list of byte strings into one byte string. /// @param _list List of byte strings to flatten. /// @return out_ The flattened byte string. function _flatten(bytes[] memory _list) private pure returns (bytes memory out_) { if (_list.length == 0) { return new bytes(0); } uint256 len; uint256 i = 0; for (; i < _list.length; i++) { len += _list[i].length; } out_ = new bytes(len); uint256 flattenedPtr; assembly { flattenedPtr := add(out_, 0x20) } for (i = 0; i < _list.length; i++) { bytes memory item = _list[i]; uint256 listPtr; assembly { listPtr := add(item, 0x20) } _memcpy(flattenedPtr, listPtr, item.length); flattenedPtr += _list[i].length; } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @title Bytes /// @notice Bytes is a library for manipulating byte arrays. library Bytes { /// @custom:attribution https://github.com/GNSPS/solidity-bytes-utils /// @notice Slices a byte array with a given starting index and length. Returns a new byte array /// as opposed to a pointer to the original array. Will throw if trying to slice more /// bytes than exist in the array. /// @param _bytes Byte array to slice. /// @param _start Starting index of the slice. /// @param _length Length of the slice. /// @return Slice of the input byte array. function slice(bytes memory _bytes, uint256 _start, uint256 _length) internal pure returns (bytes memory) { unchecked { require(_length + 31 >= _length, "slice_overflow"); require(_start + _length >= _start, "slice_overflow"); require(_bytes.length >= _start + _length, "slice_outOfBounds"); } bytes memory tempBytes; assembly { switch iszero(_length) case 0 { // Get a location of some free memory and store it in tempBytes as // Solidity does for memory variables. tempBytes := mload(0x40) // The first word of the slice result is potentially a partial // word read from the original array. To read it, we calculate // the length of that partial word and start copying that many // bytes into the array. The first word we copy will start with // data we don't care about, but the last `lengthmod` bytes will // land at the beginning of the contents of the new array. When // we're done copying, we overwrite the full first word with // the actual length of the slice. let lengthmod := and(_length, 31) // The multiplication in the next line is necessary // because when slicing multiples of 32 bytes (lengthmod == 0) // the following copy loop was copying the origin's length // and then ending prematurely not copying everything it should. let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod))) let end := add(mc, _length) for { // The multiplication in the next line has the same exact purpose // as the one above. let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start) } lt(mc, end) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { mstore(mc, mload(cc)) } mstore(tempBytes, _length) //update free-memory pointer //allocating the array padded to 32 bytes like the compiler does now mstore(0x40, and(add(mc, 31), not(31))) } //if we want a zero-length slice let's just return a zero-length array default { tempBytes := mload(0x40) //zero out the 32 bytes slice we are about to return //we need to do it because Solidity does not garbage collect mstore(tempBytes, 0) mstore(0x40, add(tempBytes, 0x20)) } } return tempBytes; } /// @notice Slices a byte array with a given starting index up to the end of the original byte /// array. Returns a new array rathern than a pointer to the original. /// @param _bytes Byte array to slice. /// @param _start Starting index of the slice. /// @return Slice of the input byte array. function slice(bytes memory _bytes, uint256 _start) internal pure returns (bytes memory) { if (_start >= _bytes.length) { return bytes(""); } return slice(_bytes, _start, _bytes.length - _start); } /// @notice Converts a byte array into a nibble array by splitting each byte into two nibbles. /// Resulting nibble array will be exactly twice as long as the input byte array. /// @param _bytes Input byte array to convert. /// @return Resulting nibble array. function toNibbles(bytes memory _bytes) internal pure returns (bytes memory) { bytes memory _nibbles; assembly { // Grab a free memory offset for the new array _nibbles := mload(0x40) // Load the length of the passed bytes array from memory let bytesLength := mload(_bytes) // Calculate the length of the new nibble array // This is the length of the input array times 2 let nibblesLength := shl(0x01, bytesLength) // Update the free memory pointer to allocate memory for the new array. // To do this, we add the length of the new array + 32 bytes for the array length // rounded up to the nearest 32 byte boundary to the current free memory pointer. mstore(0x40, add(_nibbles, and(not(0x1F), add(nibblesLength, 0x3F)))) // Store the length of the new array in memory mstore(_nibbles, nibblesLength) // Store the memory offset of the _bytes array's contents on the stack let bytesStart := add(_bytes, 0x20) // Store the memory offset of the nibbles array's contents on the stack let nibblesStart := add(_nibbles, 0x20) // Loop through each byte in the input array for { let i := 0x00 } lt(i, bytesLength) { i := add(i, 0x01) } { // Get the starting offset of the next 2 bytes in the nibbles array let offset := add(nibblesStart, shl(0x01, i)) // Load the byte at the current index within the `_bytes` array let b := byte(0x00, mload(add(bytesStart, i))) // Pull out the first nibble and store it in the new array mstore8(offset, shr(0x04, b)) // Pull out the second nibble and store it in the new array mstore8(add(offset, 0x01), and(b, 0x0F)) } } return _nibbles; } /// @notice Compares two byte arrays by comparing their keccak256 hashes. /// @param _bytes First byte array to compare. /// @param _other Second byte array to compare. /// @return True if the two byte arrays are equal, false otherwise. function equal(bytes memory _bytes, bytes memory _other) internal pure returns (bool) { return keccak256(_bytes) == keccak256(_other); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.8; import "./RLPErrors.sol"; /// @custom:attribution https://github.com/hamdiallam/Solidity-RLP /// @title RLPReader /// @notice RLPReader is a library for parsing RLP-encoded byte arrays into Solidity types. Adapted /// from Solidity-RLP (https://github.com/hamdiallam/Solidity-RLP) by Hamdi Allam with /// various tweaks to improve readability. library RLPReader { /// @notice Custom pointer type to avoid confusion between pointers and uint256s. type MemoryPointer is uint256; /// @notice RLP item types. /// @custom:value DATA_ITEM Represents an RLP data item (NOT a list). /// @custom:value LIST_ITEM Represents an RLP list item. enum RLPItemType { DATA_ITEM, LIST_ITEM } /// @notice Struct representing an RLP item. /// @custom:field length Length of the RLP item. /// @custom:field ptr Pointer to the RLP item in memory. struct RLPItem { uint256 length; MemoryPointer ptr; } /// @notice Max list length that this library will accept. uint256 internal constant MAX_LIST_LENGTH = 32; /// @notice Converts bytes to a reference to memory position and length. /// @param _in Input bytes to convert. /// @return out_ Output memory reference. function toRLPItem(bytes memory _in) internal pure returns (RLPItem memory out_) { // Empty arrays are not RLP items. if (_in.length == 0) revert EmptyItem(); MemoryPointer ptr; assembly { ptr := add(_in, 32) } out_ = RLPItem({ length: _in.length, ptr: ptr }); } /// @notice Reads an RLP list value into a list of RLP items. /// @param _in RLP list value. /// @return out_ Decoded RLP list items. function readList(RLPItem memory _in) internal pure returns (RLPItem[] memory out_) { (uint256 listOffset, uint256 listLength, RLPItemType itemType) = _decodeLength(_in); if (itemType != RLPItemType.LIST_ITEM) revert UnexpectedString(); if (listOffset + listLength != _in.length) revert InvalidDataRemainder(); // Solidity in-memory arrays can't be increased in size, but *can* be decreased in size by // writing to the length. Since we can't know the number of RLP items without looping over // the entire input, we'd have to loop twice to accurately size this array. It's easier to // simply set a reasonable maximum list length and decrease the size before we finish. out_ = new RLPItem[](MAX_LIST_LENGTH); uint256 itemCount = 0; uint256 offset = listOffset; while (offset < _in.length) { (uint256 itemOffset, uint256 itemLength,) = _decodeLength( RLPItem({ length: _in.length - offset, ptr: MemoryPointer.wrap(MemoryPointer.unwrap(_in.ptr) + offset) }) ); // We don't need to check itemCount < out.length explicitly because Solidity already // handles this check on our behalf, we'd just be wasting gas. out_[itemCount] = RLPItem({ length: itemLength + itemOffset, ptr: MemoryPointer.wrap(MemoryPointer.unwrap(_in.ptr) + offset) }); itemCount += 1; offset += itemOffset + itemLength; } // Decrease the array size to match the actual item count. assembly { mstore(out_, itemCount) } } /// @notice Reads an RLP list value into a list of RLP items. /// @param _in RLP list value. /// @return out_ Decoded RLP list items. function readList(bytes memory _in) internal pure returns (RLPItem[] memory out_) { out_ = readList(toRLPItem(_in)); } /// @notice Reads an RLP bytes value into bytes. /// @param _in RLP bytes value. /// @return out_ Decoded bytes. function readBytes(RLPItem memory _in) internal pure returns (bytes memory out_) { (uint256 itemOffset, uint256 itemLength, RLPItemType itemType) = _decodeLength(_in); if (itemType != RLPItemType.DATA_ITEM) revert UnexpectedList(); if (_in.length != itemOffset + itemLength) revert InvalidDataRemainder(); out_ = _copy(_in.ptr, itemOffset, itemLength); } /// @notice Reads an RLP bytes value into bytes. /// @param _in RLP bytes value. /// @return out_ Decoded bytes. function readBytes(bytes memory _in) internal pure returns (bytes memory out_) { out_ = readBytes(toRLPItem(_in)); } /// @notice Reads the raw bytes of an RLP item. /// @param _in RLP item to read. /// @return out_ Raw RLP bytes. function readRawBytes(RLPItem memory _in) internal pure returns (bytes memory out_) { out_ = _copy(_in.ptr, 0, _in.length); } /// @notice Decodes the length of an RLP item. /// @param _in RLP item to decode. /// @return offset_ Offset of the encoded data. /// @return length_ Length of the encoded data. /// @return type_ RLP item type (LIST_ITEM or DATA_ITEM). function _decodeLength(RLPItem memory _in) private pure returns (uint256 offset_, uint256 length_, RLPItemType type_) { // Short-circuit if there's nothing to decode, note that we perform this check when // the user creates an RLP item via toRLPItem, but it's always possible for them to bypass // that function and create an RLP item directly. So we need to check this anyway. if (_in.length == 0) revert EmptyItem(); MemoryPointer ptr = _in.ptr; uint256 prefix; assembly { prefix := byte(0, mload(ptr)) } if (prefix <= 0x7f) { // Single byte. return (0, 1, RLPItemType.DATA_ITEM); } else if (prefix <= 0xb7) { // Short string. // slither-disable-next-line variable-scope uint256 strLen = prefix - 0x80; if (_in.length <= strLen) revert ContentLengthMismatch(); bytes1 firstByteOfContent; assembly { firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff)) } if (strLen == 1 && firstByteOfContent < 0x80) revert InvalidHeader(); return (1, strLen, RLPItemType.DATA_ITEM); } else if (prefix <= 0xbf) { // Long string. uint256 lenOfStrLen = prefix - 0xb7; if (_in.length <= lenOfStrLen) revert ContentLengthMismatch(); bytes1 firstByteOfContent; assembly { firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff)) } if (firstByteOfContent == 0x00) revert InvalidHeader(); uint256 strLen; assembly { strLen := shr(sub(256, mul(8, lenOfStrLen)), mload(add(ptr, 1))) } if (strLen <= 55) revert InvalidHeader(); if (_in.length <= lenOfStrLen + strLen) revert ContentLengthMismatch(); return (1 + lenOfStrLen, strLen, RLPItemType.DATA_ITEM); } else if (prefix <= 0xf7) { // Short list. // slither-disable-next-line variable-scope uint256 listLen = prefix - 0xc0; if (_in.length <= listLen) revert ContentLengthMismatch(); return (1, listLen, RLPItemType.LIST_ITEM); } else { // Long list. uint256 lenOfListLen = prefix - 0xf7; if (_in.length <= lenOfListLen) revert ContentLengthMismatch(); bytes1 firstByteOfContent; assembly { firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff)) } if (firstByteOfContent == 0x00) revert InvalidHeader(); uint256 listLen; assembly { listLen := shr(sub(256, mul(8, lenOfListLen)), mload(add(ptr, 1))) } if (listLen <= 55) revert InvalidHeader(); if (_in.length <= lenOfListLen + listLen) revert ContentLengthMismatch(); return (1 + lenOfListLen, listLen, RLPItemType.LIST_ITEM); } } /// @notice Copies the bytes from a memory location. /// @param _src Pointer to the location to read from. /// @param _offset Offset to start reading from. /// @param _length Number of bytes to read. /// @return out_ Copied bytes. function _copy(MemoryPointer _src, uint256 _offset, uint256 _length) private pure returns (bytes memory out_) { out_ = new bytes(_length); if (_length == 0) { return out_; } // Mostly based on Solidity's copy_memory_to_memory: // https://github.com/ethereum/solidity/blob/34dd30d71b4da730488be72ff6af7083cf2a91f6/libsolidity/codegen/YulUtilFunctions.cpp#L102-L114 uint256 src = MemoryPointer.unwrap(_src) + _offset; assembly { let dest := add(out_, 32) let i := 0 for { } lt(i, _length) { i := add(i, 32) } { mstore(add(dest, i), mload(add(src, i))) } if gt(i, _length) { mstore(add(dest, _length), 0) } } } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; /// @notice The length of an RLP item must be greater than zero to be decodable error EmptyItem(); /// @notice The decoded item type for list is not a list item error UnexpectedString(); /// @notice The RLP item has an invalid data remainder error InvalidDataRemainder(); /// @notice Decoded item type for bytes is not a string item error UnexpectedList(); /// @notice The length of the content must be greater than the RLP item length error ContentLengthMismatch(); /// @notice Invalid RLP header for RLP item error InvalidHeader();
{ "remappings": [ "@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/", "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/", "@rari-capital/solmate/=lib/solmate/", "@lib-keccak/=lib/lib-keccak/contracts/lib/", "@solady/=lib/solady/src/", "forge-std/=lib/forge-std/src/", "ds-test/=lib/forge-std/lib/ds-test/src/", "safe-contracts/=lib/safe-contracts/contracts/", "kontrol-cheatcodes/=lib/kontrol-cheatcodes/src/", "@eth-optimism/=node_modules/@eth-optimism/", "@solady-test/=lib/lib-keccak/lib/solady/test/", "clones-with-immutable-args/=lib/clones-with-immutable-args/src/", "lib-keccak/=lib/lib-keccak/contracts/", "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/", "openzeppelin-contracts/=lib/openzeppelin-contracts/", "solady/=lib/solady/", "solmate/=lib/solmate/src/" ], "optimizer": { "enabled": true, "runs": 999999 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "none" }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "london", "viaIR": false, "libraries": {} }
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"version","type":"uint256"},{"indexed":true,"internalType":"enum SystemConfig.UpdateType","name":"updateType","type":"uint8"},{"indexed":false,"internalType":"bytes","name":"data","type":"bytes"}],"name":"ConfigUpdate","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint8","name":"version","type":"uint8"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"inputs":[],"name":"BATCH_INBOX_SLOT","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DISPUTE_GAME_FACTORY_SLOT","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"L1_CROSS_DOMAIN_MESSENGER_SLOT","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"L1_ERC_721_BRIDGE_SLOT","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"L1_STANDARD_BRIDGE_SLOT","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"OPTIMISM_PORTAL_SLOT","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"START_BLOCK_SLOT","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"UNSAFE_BLOCK_SIGNER_SLOT","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"VERSION","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"basefeeScalar","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"batchInbox","outputs":[{"internalType":"address","name":"addr_","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"batcherHash","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"blobbasefeeScalar","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"disputeGameFactory","outputs":[{"internalType":"address","name":"addr_","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"gasLimit","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"gasPayingToken","outputs":[{"internalType":"address","name":"addr_","type":"address"},{"internalType":"uint8","name":"decimals_","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"gasPayingTokenName","outputs":[{"internalType":"string","name":"name_","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"gasPayingTokenSymbol","outputs":[{"internalType":"string","name":"symbol_","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_owner","type":"address"},{"internalType":"uint32","name":"_basefeeScalar","type":"uint32"},{"internalType":"uint32","name":"_blobbasefeeScalar","type":"uint32"},{"internalType":"bytes32","name":"_batcherHash","type":"bytes32"},{"internalType":"uint64","name":"_gasLimit","type":"uint64"},{"internalType":"address","name":"_unsafeBlockSigner","type":"address"},{"components":[{"internalType":"uint32","name":"maxResourceLimit","type":"uint32"},{"internalType":"uint8","name":"elasticityMultiplier","type":"uint8"},{"internalType":"uint8","name":"baseFeeMaxChangeDenominator","type":"uint8"},{"internalType":"uint32","name":"minimumBaseFee","type":"uint32"},{"internalType":"uint32","name":"systemTxMaxGas","type":"uint32"},{"internalType":"uint128","name":"maximumBaseFee","type":"uint128"}],"internalType":"struct ResourceMetering.ResourceConfig","name":"_config","type":"tuple"},{"internalType":"address","name":"_batchInbox","type":"address"},{"components":[{"internalType":"address","name":"l1CrossDomainMessenger","type":"address"},{"internalType":"address","name":"l1ERC721Bridge","type":"address"},{"internalType":"address","name":"l1StandardBridge","type":"address"},{"internalType":"address","name":"disputeGameFactory","type":"address"},{"internalType":"address","name":"optimismPortal","type":"address"},{"internalType":"address","name":"optimismMintableERC20Factory","type":"address"},{"internalType":"address","name":"gasPayingToken","type":"address"}],"internalType":"struct SystemConfig.Addresses","name":"_addresses","type":"tuple"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"isCustomGasToken","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"l1CrossDomainMessenger","outputs":[{"internalType":"address","name":"addr_","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"l1ERC721Bridge","outputs":[{"internalType":"address","name":"addr_","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"l1StandardBridge","outputs":[{"internalType":"address","name":"addr_","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maximumGasLimit","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"minimumGasLimit","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"optimismMintableERC20Factory","outputs":[{"internalType":"address","name":"addr_","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"optimismPortal","outputs":[{"internalType":"address","name":"addr_","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"overhead","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"resourceConfig","outputs":[{"components":[{"internalType":"uint32","name":"maxResourceLimit","type":"uint32"},{"internalType":"uint8","name":"elasticityMultiplier","type":"uint8"},{"internalType":"uint8","name":"baseFeeMaxChangeDenominator","type":"uint8"},{"internalType":"uint32","name":"minimumBaseFee","type":"uint32"},{"internalType":"uint32","name":"systemTxMaxGas","type":"uint32"},{"internalType":"uint128","name":"maximumBaseFee","type":"uint128"}],"internalType":"struct ResourceMetering.ResourceConfig","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"scalar","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_batcherHash","type":"bytes32"}],"name":"setBatcherHash","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_overhead","type":"uint256"},{"internalType":"uint256","name":"_scalar","type":"uint256"}],"name":"setGasConfig","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint32","name":"_basefeeScalar","type":"uint32"},{"internalType":"uint32","name":"_blobbasefeeScalar","type":"uint32"}],"name":"setGasConfigEcotone","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint64","name":"_gasLimit","type":"uint64"}],"name":"setGasLimit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_unsafeBlockSigner","type":"address"}],"name":"setUnsafeBlockSigner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"startBlock","outputs":[{"internalType":"uint256","name":"startBlock_","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"unsafeBlockSigner","outputs":[{"internalType":"address","name":"addr_","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"version","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"}]
Contract Creation Code
60806040523480156200001157600080fd5b506200004962000032600160008051602062003ced83398151915262001203565b60001b600019620000d160201b62000fcd1760201c565b6040805160c080820183526001808352602080840182905260028486015260006060808601829052608080870183905260a0808801849052885160e081018a528481529485018490529784018390529083018290528201819052948101859052918201849052620000cb9361dead9390928392839290918391908290620000d5565b6200142c565b9055565b600054610100900460ff1615808015620000f65750600054600160ff909116105b806200012657506200011330620004e660201b62000fd11760201c565b15801562000126575060005460ff166001145b6200018f5760405162461bcd60e51b815260206004820152602e60248201527f496e697469616c697a61626c653a20636f6e747261637420697320616c72656160448201526d191e481a5b9a5d1a585b1a5e995960921b60648201526084015b60405180910390fd5b6000805460ff191660011790558015620001b3576000805461ff0019166101001790555b620001bd620004f5565b620001c88a6200055d565b620001d387620005dc565b620001df89896200062e565b620001ea86620006f5565b620002217f65a7ed542fb37fe237fdfbdd70b31598523fe5b32879e307bae27a0bd9581c0886620000d160201b62000fcd1760201c565b620002676200025260017f71ac12829d66ee73d8d95bff50b3589745ce57edae70a3fb111a2342464dc59862001203565b60001b84620000d160201b62000fcd1760201c565b620002b16200029860017f383f291819e6d54073bc9a648251d97421076bdd101933c0c022219ce958063762001203565b60001b8360000151620000d160201b62000fcd1760201c565b620002fb620002e260017f46adcbebc6be8ce551740c29c47c8798210f23f7f4086c41752944352568d5a862001203565b60001b8360200151620000d160201b62000fcd1760201c565b620003456200032c60017f9904ba90dde5696cda05c9e0dab5cbaa0fea005ace4d11218a02ac668dad637762001203565b60001b8360400151620000d160201b62000fcd1760201c565b6200038f6200037660017f52322a25d9f59ea17656545543306b7aef62bc0cc53a0e65ccfa0c75b97aa90762001203565b60001b8360600151620000d160201b62000fcd1760201c565b620003c8620003af600160008051602062003ccd83398151915262001203565b60001b8360800151620000d160201b62000fcd1760201c565b62000412620003f960017fa04c5bb938ca6fc46d95553abf0a76345ce3e722a30bf4f74928b8e7d852320d62001203565b60001b8360a00151620000d160201b62000fcd1760201c565b6200041c620007f1565b60c08201516200042c9062000862565b620004378462000aeb565b6200044162000e2f565b6001600160401b0316866001600160401b03161015620004935760405162461bcd60e51b815260206004820152601f602482015260008051602062003c6d833981519152604482015260640162000186565b8015620004da576000805461ff0019169055604051600181527f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb38474024989060200160405180910390a15b50505050505050505050565b6001600160a01b03163b151590565b600054610100900460ff16620005515760405162461bcd60e51b815260206004820152602b602482015260008051602062003cad83398151915260448201526a6e697469616c697a696e6760a81b606482015260840162000186565b6200055b62000e5c565b565b6200056762000ec3565b6001600160a01b038116620005ce5760405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201526564647265737360d01b606482015260840162000186565b620005d98162000f1f565b50565b60678190556040805160208082018490528251808303909101815290820190915260005b600060008051602062003c8d833981519152836040516200062291906200124c565b60405180910390a35050565b60688054600160401b600160801b0319166801000000000000000063ffffffff85811691820263ffffffff60601b1916929092176c010000000000000000000000009285169290920291909117909155600160f81b602083811b67ffffffff0000000016909217176066819055606554604080519384019190915282015260009060600160408051601f1981840301815291905290506001600060008051602062003c8d83398151915283604051620006e891906200124c565b60405180910390a3505050565b620006ff62000e2f565b6001600160401b0316816001600160401b03161015620007515760405162461bcd60e51b815260206004820152601f602482015260008051602062003c6d833981519152604482015260640162000186565b630bebc2006001600160401b0382161115620007b05760405162461bcd60e51b815260206004820181905260248201527f53797374656d436f6e6669673a20676173206c696d697420746f6f2068696768604482015260640162000186565b606880546001600160401b0319166001600160401b038316908117909155604080516020808201939093528151808203909301835281019052600262000600565b6200082562000811600160008051602062003ced83398151915262001203565b60001b62000f7160201b6200075f1760201c565b6000036200055b576200055b6200084d600160008051602062003ced83398151915262001203565b60001b43620000d160201b62000fcd1760201c565b6001600160a01b038116158015906200089857506001600160a01b03811673eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee14155b8015620008ac5750620008aa62000f75565b155b15620005d957601260ff16816001600160a01b031663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa158015620008f6573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906200091c919062001281565b60ff1614620009855760405162461bcd60e51b815260206004820152602e60248201527f53797374656d436f6e6669673a2062616420646563696d616c73206f6620676160448201526d39903830bcb4b733903a37b5b2b760911b606482015260840162000186565b600062000a05826001600160a01b03166306fdde036040518163ffffffff1660e01b8152600401600060405180830381865afa158015620009ca573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052620009f49190810190620012c3565b62000fa960201b62000fed1760201c565b9050600062000a4c836001600160a01b03166395d89b416040518163ffffffff1660e01b8152600401600060405180830381865afa158015620009ca573d6000803e3d6000fd5b905062000a6883601284846200104160201b620010901760201c565b62000a726200111d565b6040516371cfaa3f60e01b81526001600160a01b03858116600483015260126024830152604482018590526064820184905291909116906371cfaa3f90608401600060405180830381600087803b15801562000acd57600080fd5b505af115801562000ae2573d6000803e3d6000fd5b50505050505050565b8060a001516001600160801b0316816060015163ffffffff16111562000b7a5760405162461bcd60e51b815260206004820152603560248201527f53797374656d436f6e6669673a206d696e206261736520666565206d7573742060448201527f6265206c657373207468616e206d617820626173650000000000000000000000606482015260840162000186565b6001816040015160ff161162000beb5760405162461bcd60e51b815260206004820152602f60248201527f53797374656d436f6e6669673a2064656e6f6d696e61746f72206d757374206260448201526e65206c6172676572207468616e203160881b606482015260840162000186565b606854608082015182516001600160401b039092169162000c0d91906200137b565b63ffffffff16111562000c525760405162461bcd60e51b815260206004820152601f602482015260008051602062003c6d833981519152604482015260640162000186565b6000816020015160ff161162000cc35760405162461bcd60e51b815260206004820152602f60248201527f53797374656d436f6e6669673a20656c6173746963697479206d756c7469706c60448201526e06965722063616e6e6f74206265203608c1b606482015260840162000186565b8051602082015163ffffffff82169160ff9091169062000ce5908290620013a6565b62000cf19190620013d8565b63ffffffff161462000d6c5760405162461bcd60e51b815260206004820152603760248201527f53797374656d436f6e6669673a20707265636973696f6e206c6f73732077697460448201527f6820746172676574207265736f75726365206c696d6974000000000000000000606482015260840162000186565b805160698054602084015160408501516060860151608087015160a09097015163ffffffff96871664ffffffffff199095169490941764010000000060ff948516021764ffffffffff60281b191665010000000000939092169290920263ffffffff60301b19161766010000000000009185169190910217600160501b600160f01b0319166a01000000000000000000009390941692909202600160701b600160f01b03191692909217600160701b6001600160801b0390921691909102179055565b60695460009062000e579063ffffffff6a010000000000000000000082048116911662001407565b905090565b600054610100900460ff1662000eb85760405162461bcd60e51b815260206004820152602b602482015260008051602062003cad83398151915260448201526a6e697469616c697a696e6760a81b606482015260840162000186565b6200055b3362000f1f565b6033546001600160a01b031633146200055b5760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e6572604482015260640162000186565b603380546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e090600090a35050565b5490565b60008062000f826200113f565b506001600160a01b031673eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee141592915050565b6000602082511115620010255760405162461bcd60e51b815260206004820152603660248201527f476173506179696e67546f6b656e3a20737472696e672063616e6e6f7420626560448201527f2067726561746572207468616e20333220627974657300000000000000000000606482015260840162000186565b6200103b826200116060201b620011621760201c565b92915050565b6200108b62001061600160008051602062003c4d83398151915262001203565b60001b856001600160a01b031660a08660ff16901b1760001b620000d160201b62000fcd1760201c565b620010d1620010bc60017f657c3582c29b3176614e3a33ddd1ec48352696a04e92b3c0566d72010fa8863d62001203565b60001b83620000d160201b62000fcd1760201c565b620011176200110260017fa48b38a4b44951360fbdcbfaaeae5ed6ae92585412e9841b70ec72ed8cd0576462001203565b60001b82620000d160201b62000fcd1760201c565b50505050565b600062000e5762000811600160008051602062003ccd83398151915262001203565b600080620011576200118a60201b6200118b1760201c565b90939092509050565b805160218110620011795763ec92f9a36000526004601cfd5b9081015160209190910360031b1b90565b60008080620011ae62000811600160008051602062003c4d83398151915262001203565b6001600160a01b0381169350905082620011e1575073eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee92601292509050565b60a081901c9150509091565b634e487b7160e01b600052601160045260246000fd5b600082821015620012185762001218620011ed565b500390565b60005b838110156200123a57818101518382015260200162001220565b83811115620011175750506000910152565b60208152600082518060208401526200126d8160408501602087016200121d565b601f01601f19169190910160400192915050565b6000602082840312156200129457600080fd5b815160ff81168114620012a657600080fd5b9392505050565b634e487b7160e01b600052604160045260246000fd5b600060208284031215620012d657600080fd5b81516001600160401b0380821115620012ee57600080fd5b818401915084601f8301126200130357600080fd5b815181811115620013185762001318620012ad565b604051601f8201601f19908116603f01168101908382118183101715620013435762001343620012ad565b816040528281528760208487010111156200135d57600080fd5b620013708360208301602088016200121d565b979650505050505050565b600063ffffffff8083168185168083038211156200139d576200139d620011ed565b01949350505050565b600063ffffffff80841680620013cc57634e487b7160e01b600052601260045260246000fd5b92169190910492915050565b600063ffffffff80831681851681830481118215151615620013fe57620013fe620011ed565b02949350505050565b60006001600160401b038281168482168083038211156200139d576200139d620011ed565b612811806200143c6000396000f3fe608060405234801561001057600080fd5b50600436106102de5760003560e01c8063a711986911610186578063e0e2016d116100e3578063f2fde38b11610097578063f8c68de011610071578063f8c68de0146106e9578063fd32aa0f146106f1578063ffa1ad74146106f957600080fd5b8063f2fde38b146106b9578063f45e65d8146106cc578063f68016b7146106d557600080fd5b8063e81b2c6d116100c8578063e81b2c6d14610688578063ec70751714610691578063f2b4e617146106b157600080fd5b8063e0e2016d14610678578063e2a3285c1461068057600080fd5b8063c9b26f611161013a578063d84447151161011f578063d844471514610655578063dac6e63a1461065d578063db9040fa1461066557600080fd5b8063c9b26f611461050e578063cc731b021461052157600080fd5b8063bc49ce5f1161016b578063bc49ce5f146104cd578063bfb14fb7146104d5578063c4e8ddfa1461050657600080fd5b8063a7119869146104b2578063b40a817c146104ba57600080fd5b80634397dfef1161023f578063550fcdc9116101f35780638da5cb5b116101cd5780638da5cb5b14610479578063935f029e146104975780639b7d7f0a146104aa57600080fd5b8063550fcdc9146104615780635d73369c14610469578063715018a61461047157600080fd5b80634add321d116102245780634add321d146103e95780634f16540b146103f157806354fd4d501461041857600080fd5b80634397dfef146103ab57806348cd4cb1146103e157600080fd5b806318d13918116102965780631fd19ee11161027b5780631fd19ee114610378578063213268491461038057806321d7fde51461039857600080fd5b806318d139181461035b57806319f5cea81461037057600080fd5b80630a49cb03116102c75780630a49cb031461032b5780630ae14b1b146103335780630c18c1621461035257600080fd5b806306c92657146102e3578063078f29cf146102fe575b600080fd5b6102eb610701565b6040519081526020015b60405180910390f35b61030661072f565b60405173ffffffffffffffffffffffffffffffffffffffff90911681526020016102f5565b610306610768565b630bebc2005b60405167ffffffffffffffff90911681526020016102f5565b6102eb60655481565b61036e610369366004612248565b610798565b005b6102eb6107ac565b6103066107d7565b610388610801565b60405190151581526020016102f5565b61036e6103a636600461227e565b610840565b6103b3610856565b6040805173ffffffffffffffffffffffffffffffffffffffff909316835260ff9091166020830152016102f5565b6102eb61086a565b61033961089a565b6102eb7f65a7ed542fb37fe237fdfbdd70b31598523fe5b32879e307bae27a0bd9581c0881565b6104546040518060400160405280600c81526020017f322e332e302d626574612e31000000000000000000000000000000000000000081525081565b6040516102f59190612327565b6104546108c0565b6102eb6108ca565b61036e6108f5565b60335473ffffffffffffffffffffffffffffffffffffffff16610306565b61036e6104a536600461233a565b610909565b61030661091b565b61030661094b565b61036e6104c8366004612374565b61097b565b6102eb61098c565b6068546104f19068010000000000000000900463ffffffff1681565b60405163ffffffff90911681526020016102f5565b6103066109b7565b61036e61051c36600461238f565b6109e7565b6105e56040805160c081018252600080825260208201819052918101829052606081018290526080810182905260a0810191909152506040805160c08101825260695463ffffffff8082168352640100000000820460ff9081166020850152650100000000008304169383019390935266010000000000008104831660608301526a0100000000000000000000810490921660808201526e0100000000000000000000000000009091046fffffffffffffffffffffffffffffffff1660a082015290565b6040516102f59190600060c08201905063ffffffff80845116835260ff602085015116602084015260ff6040850151166040840152806060850151166060840152806080850151166080840152506fffffffffffffffffffffffffffffffff60a08401511660a083015292915050565b6104546109f8565b610306610a02565b61036e6106733660046124c2565b610a32565b6102eb610e3d565b6102eb610e68565b6102eb60675481565b6068546104f1906c01000000000000000000000000900463ffffffff1681565b610306610e93565b61036e6106c7366004612248565b610ec3565b6102eb60665481565b6068546103399067ffffffffffffffff1681565b6102eb610f77565b6102eb610fa2565b6102eb600081565b61072c60017fa04c5bb938ca6fc46d95553abf0a76345ce3e722a30bf4f74928b8e7d852320d612644565b81565b600061076361075f60017f9904ba90dde5696cda05c9e0dab5cbaa0fea005ace4d11218a02ac668dad6377612644565b5490565b905090565b600061076361075f60017f4b6c74f9e688cb39801f2112c14a8c57232a3fc5202e1444126d4bce86eb19ad612644565b6107a0611208565b6107a981611289565b50565b61072c60017f46adcbebc6be8ce551740c29c47c8798210f23f7f4086c41752944352568d5a8612644565b60006107637f65a7ed542fb37fe237fdfbdd70b31598523fe5b32879e307bae27a0bd9581c085490565b60008061080c610856565b5073ffffffffffffffffffffffffffffffffffffffff1673eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee141592915050565b610848611208565b6108528282611346565b5050565b60008061086161118b565b90939092509050565b600061076361075f60017fa11ee3ab75b40e88a0105e935d17cd36c8faee0138320d776c411291bdbbb1a0612644565b6069546000906107639063ffffffff6a010000000000000000000082048116911661265b565b6060610763611484565b61072c60017f383f291819e6d54073bc9a648251d97421076bdd101933c0c022219ce9580637612644565b6108fd611208565b6109076000611545565b565b610911611208565b61085282826115bc565b600061076361075f60017fa04c5bb938ca6fc46d95553abf0a76345ce3e722a30bf4f74928b8e7d852320d612644565b600061076361075f60017f383f291819e6d54073bc9a648251d97421076bdd101933c0c022219ce9580637612644565b610983611208565b6107a981611692565b61072c60017f71ac12829d66ee73d8d95bff50b3589745ce57edae70a3fb111a2342464dc598612644565b600061076361075f60017f46adcbebc6be8ce551740c29c47c8798210f23f7f4086c41752944352568d5a8612644565b6109ef611208565b6107a9816117e8565b6060610763611810565b600061076361075f60017f71ac12829d66ee73d8d95bff50b3589745ce57edae70a3fb111a2342464dc598612644565b600054610100900460ff1615808015610a525750600054600160ff909116105b80610a6c5750303b158015610a6c575060005460ff166001145b610afd576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602e60248201527f496e697469616c697a61626c653a20636f6e747261637420697320616c72656160448201527f647920696e697469616c697a656400000000000000000000000000000000000060648201526084015b60405180910390fd5b600080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff001660011790558015610b5b57600080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00ff166101001790555b610b636118c6565b610b6c8a610ec3565b610b75876117e8565b610b7f8989611346565b610b8886611692565b610bb17f65a7ed542fb37fe237fdfbdd70b31598523fe5b32879e307bae27a0bd9581c08869055565b610be4610bdf60017f71ac12829d66ee73d8d95bff50b3589745ce57edae70a3fb111a2342464dc598612644565b849055565b610c18610c1260017f383f291819e6d54073bc9a648251d97421076bdd101933c0c022219ce9580637612644565b83519055565b610c4f610c4660017f46adcbebc6be8ce551740c29c47c8798210f23f7f4086c41752944352568d5a8612644565b60208401519055565b610c86610c7d60017f9904ba90dde5696cda05c9e0dab5cbaa0fea005ace4d11218a02ac668dad6377612644565b60408401519055565b610cbd610cb460017f52322a25d9f59ea17656545543306b7aef62bc0cc53a0e65ccfa0c75b97aa907612644565b60608401519055565b610cf4610ceb60017f4b6c74f9e688cb39801f2112c14a8c57232a3fc5202e1444126d4bce86eb19ad612644565b60808401519055565b610d2b610d2260017fa04c5bb938ca6fc46d95553abf0a76345ce3e722a30bf4f74928b8e7d852320d612644565b60a08401519055565b610d33611965565b610d408260c001516119cd565b610d4984611cd7565b610d5161089a565b67ffffffffffffffff168667ffffffffffffffff161015610dce576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601f60248201527f53797374656d436f6e6669673a20676173206c696d697420746f6f206c6f77006044820152606401610af4565b8015610e3157600080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00ff169055604051600181527f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb38474024989060200160405180910390a15b50505050505050505050565b61072c60017fa11ee3ab75b40e88a0105e935d17cd36c8faee0138320d776c411291bdbbb1a0612644565b61072c60017f52322a25d9f59ea17656545543306b7aef62bc0cc53a0e65ccfa0c75b97aa907612644565b600061076361075f60017f52322a25d9f59ea17656545543306b7aef62bc0cc53a0e65ccfa0c75b97aa907612644565b610ecb611208565b73ffffffffffffffffffffffffffffffffffffffff8116610f6e576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201527f64647265737300000000000000000000000000000000000000000000000000006064820152608401610af4565b6107a981611545565b61072c60017f9904ba90dde5696cda05c9e0dab5cbaa0fea005ace4d11218a02ac668dad6377612644565b61072c60017f4b6c74f9e688cb39801f2112c14a8c57232a3fc5202e1444126d4bce86eb19ad612644565b9055565b73ffffffffffffffffffffffffffffffffffffffff163b151590565b6000602082511115611081576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603660248201527f476173506179696e67546f6b656e3a20737472696e672063616e6e6f7420626560448201527f2067726561746572207468616e203332206279746573000000000000000000006064820152608401610af4565b61108a82611162565b92915050565b6110f66110be60017f04adb1412b2ddc16fcc0d4538d5c8f07cf9c83abecc6b41f6f69037b708fbcec612644565b74ff000000000000000000000000000000000000000060a086901b1673ffffffffffffffffffffffffffffffffffffffff8716179055565b61112961112460017f657c3582c29b3176614e3a33ddd1ec48352696a04e92b3c0566d72010fa8863d612644565b839055565b61115c61115760017fa48b38a4b44951360fbdcbfaaeae5ed6ae92585412e9841b70ec72ed8cd05764612644565b829055565b50505050565b80516021811061117a5763ec92f9a36000526004601cfd5b9081015160209190910360031b1b90565b600080806111bd61075f60017f04adb1412b2ddc16fcc0d4538d5c8f07cf9c83abecc6b41f6f69037b708fbcec612644565b73ffffffffffffffffffffffffffffffffffffffff811693509050826111fc575073eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee92601292509050565b60a081901c9150509091565b60335473ffffffffffffffffffffffffffffffffffffffff163314610907576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65726044820152606401610af4565b6112b27f65a7ed542fb37fe237fdfbdd70b31598523fe5b32879e307bae27a0bd9581c08829055565b6040805173ffffffffffffffffffffffffffffffffffffffff8316602082015260009101604080517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0818403018152919052905060035b60007f1d2b0bda21d56b8bd12d4f94ebacffdfb35f5e226f84b461103bb8beab6353be8360405161133a9190612327565b60405180910390a35050565b606880547fffffffffffffffffffffffffffffffff0000000000000000ffffffffffffffff166801000000000000000063ffffffff8581169182027fffffffffffffffffffffffffffffffff00000000ffffffffffffffffffffffff16929092176c0100000000000000000000000092851692909202919091179091557f0100000000000000000000000000000000000000000000000000000000000000602083811b67ffffffff000000001690921717606681905560655460408051938401919091528201526000906060015b604080517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08184030181529190529050600160007f1d2b0bda21d56b8bd12d4f94ebacffdfb35f5e226f84b461103bb8beab6353be836040516114779190612327565b60405180910390a3505050565b6060600061149061118b565b5090507fffffffffffffffffffffffff111111111111111111111111111111111111111273ffffffffffffffffffffffffffffffffffffffff82160161150957505060408051808201909152600381527f4554480000000000000000000000000000000000000000000000000000000000602082015290565b61153f61153a61075f60017fa48b38a4b44951360fbdcbfaaeae5ed6ae92585412e9841b70ec72ed8cd05764612644565b61214b565b91505090565b6033805473ffffffffffffffffffffffffffffffffffffffff8381167fffffffffffffffffffffffff0000000000000000000000000000000000000000831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e090600090a35050565b7fff0000000000000000000000000000000000000000000000000000000000000081161561166c576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602160248201527f53797374656d436f6e6669673a207363616c61722065786365656473206d617860448201527f2e000000000000000000000000000000000000000000000000000000000000006064820152608401610af4565b606582905560668190556040805160208101849052908101829052600090606001611414565b61169a61089a565b67ffffffffffffffff168167ffffffffffffffff161015611717576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601f60248201527f53797374656d436f6e6669673a20676173206c696d697420746f6f206c6f77006044820152606401610af4565b630bebc20067ffffffffffffffff8216111561178f576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820181905260248201527f53797374656d436f6e6669673a20676173206c696d697420746f6f20686967686044820152606401610af4565b606880547fffffffffffffffffffffffffffffffffffffffffffffffff00000000000000001667ffffffffffffffff83169081179091556040805160208082019390935281518082039093018352810190526002611309565b6067819055604080516020808201849052825180830390910181529082019091526000611309565b6060600061181c61118b565b5090507fffffffffffffffffffffffff111111111111111111111111111111111111111273ffffffffffffffffffffffffffffffffffffffff82160161189557505060408051808201909152600581527f4574686572000000000000000000000000000000000000000000000000000000602082015290565b61153f61153a61075f60017f657c3582c29b3176614e3a33ddd1ec48352696a04e92b3c0566d72010fa8863d612644565b600054610100900460ff1661195d576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602b60248201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960448201527f6e697469616c697a696e670000000000000000000000000000000000000000006064820152608401610af4565b61090761217f565b61199361075f60017fa11ee3ab75b40e88a0105e935d17cd36c8faee0138320d776c411291bdbbb1a0612644565b600003610907576109076119c860017fa11ee3ab75b40e88a0105e935d17cd36c8faee0138320d776c411291bdbbb1a0612644565b439055565b73ffffffffffffffffffffffffffffffffffffffff811615801590611a1c575073ffffffffffffffffffffffffffffffffffffffff811673eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee14155b8015611a2d5750611a2b610801565b155b156107a957601260ff168173ffffffffffffffffffffffffffffffffffffffff1663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa158015611a82573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611aa69190612687565b60ff1614611b36576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602e60248201527f53797374656d436f6e6669673a2062616420646563696d616c73206f6620676160448201527f7320706179696e6720746f6b656e0000000000000000000000000000000000006064820152608401610af4565b6000611bd18273ffffffffffffffffffffffffffffffffffffffff166306fdde036040518163ffffffff1660e01b8152600401600060405180830381865afa158015611b86573d6000803e3d6000fd5b505050506040513d6000823e601f3d9081017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0168201604052611bcc91908101906126a4565b610fed565b90506000611c238373ffffffffffffffffffffffffffffffffffffffff166395d89b416040518163ffffffff1660e01b8152600401600060405180830381865afa158015611b86573d6000803e3d6000fd5b9050611c328360128484611090565b611c3a610768565b6040517f71cfaa3f00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff858116600483015260126024830152604482018590526064820184905291909116906371cfaa3f90608401600060405180830381600087803b158015611cba57600080fd5b505af1158015611cce573d6000803e3d6000fd5b50505050505050565b8060a001516fffffffffffffffffffffffffffffffff16816060015163ffffffff161115611d87576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603560248201527f53797374656d436f6e6669673a206d696e206261736520666565206d7573742060448201527f6265206c657373207468616e206d6178206261736500000000000000000000006064820152608401610af4565b6001816040015160ff1611611e1e576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602f60248201527f53797374656d436f6e6669673a2064656e6f6d696e61746f72206d757374206260448201527f65206c6172676572207468616e203100000000000000000000000000000000006064820152608401610af4565b6068546080820151825167ffffffffffffffff90921691611e3f919061276f565b63ffffffff161115611ead576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601f60248201527f53797374656d436f6e6669673a20676173206c696d697420746f6f206c6f77006044820152606401610af4565b6000816020015160ff1611611f44576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602f60248201527f53797374656d436f6e6669673a20656c6173746963697479206d756c7469706c60448201527f6965722063616e6e6f74206265203000000000000000000000000000000000006064820152608401610af4565b8051602082015163ffffffff82169160ff90911690611f6490829061278e565b611f6e91906127d8565b63ffffffff1614612001576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603760248201527f53797374656d436f6e6669673a20707265636973696f6e206c6f73732077697460448201527f6820746172676574207265736f75726365206c696d69740000000000000000006064820152608401610af4565b805160698054602084015160408501516060860151608087015160a09097015163ffffffff9687167fffffffffffffffffffffffffffffffffffffffffffffffffffffff00000000009095169490941764010000000060ff94851602177fffffffffffffffffffffffffffffffffffffffffffff0000000000ffffffffff166501000000000093909216929092027fffffffffffffffffffffffffffffffffffffffffffff00000000ffffffffffff1617660100000000000091851691909102177fffff0000000000000000000000000000000000000000ffffffffffffffffffff166a010000000000000000000093909416929092027fffff00000000000000000000000000000000ffffffffffffffffffffffffffff16929092176e0100000000000000000000000000006fffffffffffffffffffffffffffffffff90921691909102179055565b60405160005b82811a1561216157600101612151565b80825260208201838152600082820152505060408101604052919050565b600054610100900460ff16612216576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602b60248201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960448201527f6e697469616c697a696e670000000000000000000000000000000000000000006064820152608401610af4565b61090733611545565b803573ffffffffffffffffffffffffffffffffffffffff8116811461224357600080fd5b919050565b60006020828403121561225a57600080fd5b6122638261221f565b9392505050565b803563ffffffff8116811461224357600080fd5b6000806040838503121561229157600080fd5b61229a8361226a565b91506122a86020840161226a565b90509250929050565b60005b838110156122cc5781810151838201526020016122b4565b8381111561115c5750506000910152565b600081518084526122f58160208601602086016122b1565b601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0169290920160200192915050565b60208152600061226360208301846122dd565b6000806040838503121561234d57600080fd5b50508035926020909101359150565b803567ffffffffffffffff8116811461224357600080fd5b60006020828403121561238657600080fd5b6122638261235c565b6000602082840312156123a157600080fd5b5035919050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b60405160c0810167ffffffffffffffff811182821017156123fa576123fa6123a8565b60405290565b60ff811681146107a957600080fd5b600060e0828403121561242157600080fd5b60405160e0810181811067ffffffffffffffff82111715612444576124446123a8565b6040529050806124538361221f565b81526124616020840161221f565b60208201526124726040840161221f565b60408201526124836060840161221f565b60608201526124946080840161221f565b60808201526124a560a0840161221f565b60a08201526124b660c0840161221f565b60c08201525092915050565b6000806000806000806000806000898b036102808112156124e257600080fd5b6124eb8b61221f565b99506124f960208c0161226a565b985061250760408c0161226a565b975060608b0135965061251c60808c0161235c565b955061252a60a08c0161221f565b945060c07fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff408201121561255c57600080fd5b506125656123d7565b61257160c08c0161226a565b815260e08b013561258181612400565b60208201526101008b013561259581612400565b60408201526125a76101208c0161226a565b60608201526125b96101408c0161226a565b60808201526101608b01356fffffffffffffffffffffffffffffffff811681146125e257600080fd5b60a082015292506125f66101808b0161221f565b91506126068b6101a08c0161240f565b90509295985092959850929598565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b60008282101561265657612656612615565b500390565b600067ffffffffffffffff80831681851680830382111561267e5761267e612615565b01949350505050565b60006020828403121561269957600080fd5b815161226381612400565b6000602082840312156126b657600080fd5b815167ffffffffffffffff808211156126ce57600080fd5b818401915084601f8301126126e257600080fd5b8151818111156126f4576126f46123a8565b604051601f82017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0908116603f0116810190838211818310171561273a5761273a6123a8565b8160405282815287602084870101111561275357600080fd5b6127648360208301602088016122b1565b979650505050505050565b600063ffffffff80831681851680830382111561267e5761267e612615565b600063ffffffff808416806127cc577f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b92169190910492915050565b600063ffffffff808316818516818304811182151516156127fb576127fb612615565b0294935050505056fea164736f6c634300080f000a04adb1412b2ddc16fcc0d4538d5c8f07cf9c83abecc6b41f6f69037b708fbcec53797374656d436f6e6669673a20676173206c696d697420746f6f206c6f77001d2b0bda21d56b8bd12d4f94ebacffdfb35f5e226f84b461103bb8beab6353be496e697469616c697a61626c653a20636f6e7472616374206973206e6f7420694b6c74f9e688cb39801f2112c14a8c57232a3fc5202e1444126d4bce86eb19ada11ee3ab75b40e88a0105e935d17cd36c8faee0138320d776c411291bdbbb1a0
Deployed Bytecode
0x608060405234801561001057600080fd5b50600436106102de5760003560e01c8063a711986911610186578063e0e2016d116100e3578063f2fde38b11610097578063f8c68de011610071578063f8c68de0146106e9578063fd32aa0f146106f1578063ffa1ad74146106f957600080fd5b8063f2fde38b146106b9578063f45e65d8146106cc578063f68016b7146106d557600080fd5b8063e81b2c6d116100c8578063e81b2c6d14610688578063ec70751714610691578063f2b4e617146106b157600080fd5b8063e0e2016d14610678578063e2a3285c1461068057600080fd5b8063c9b26f611161013a578063d84447151161011f578063d844471514610655578063dac6e63a1461065d578063db9040fa1461066557600080fd5b8063c9b26f611461050e578063cc731b021461052157600080fd5b8063bc49ce5f1161016b578063bc49ce5f146104cd578063bfb14fb7146104d5578063c4e8ddfa1461050657600080fd5b8063a7119869146104b2578063b40a817c146104ba57600080fd5b80634397dfef1161023f578063550fcdc9116101f35780638da5cb5b116101cd5780638da5cb5b14610479578063935f029e146104975780639b7d7f0a146104aa57600080fd5b8063550fcdc9146104615780635d73369c14610469578063715018a61461047157600080fd5b80634add321d116102245780634add321d146103e95780634f16540b146103f157806354fd4d501461041857600080fd5b80634397dfef146103ab57806348cd4cb1146103e157600080fd5b806318d13918116102965780631fd19ee11161027b5780631fd19ee114610378578063213268491461038057806321d7fde51461039857600080fd5b806318d139181461035b57806319f5cea81461037057600080fd5b80630a49cb03116102c75780630a49cb031461032b5780630ae14b1b146103335780630c18c1621461035257600080fd5b806306c92657146102e3578063078f29cf146102fe575b600080fd5b6102eb610701565b6040519081526020015b60405180910390f35b61030661072f565b60405173ffffffffffffffffffffffffffffffffffffffff90911681526020016102f5565b610306610768565b630bebc2005b60405167ffffffffffffffff90911681526020016102f5565b6102eb60655481565b61036e610369366004612248565b610798565b005b6102eb6107ac565b6103066107d7565b610388610801565b60405190151581526020016102f5565b61036e6103a636600461227e565b610840565b6103b3610856565b6040805173ffffffffffffffffffffffffffffffffffffffff909316835260ff9091166020830152016102f5565b6102eb61086a565b61033961089a565b6102eb7f65a7ed542fb37fe237fdfbdd70b31598523fe5b32879e307bae27a0bd9581c0881565b6104546040518060400160405280600c81526020017f322e332e302d626574612e31000000000000000000000000000000000000000081525081565b6040516102f59190612327565b6104546108c0565b6102eb6108ca565b61036e6108f5565b60335473ffffffffffffffffffffffffffffffffffffffff16610306565b61036e6104a536600461233a565b610909565b61030661091b565b61030661094b565b61036e6104c8366004612374565b61097b565b6102eb61098c565b6068546104f19068010000000000000000900463ffffffff1681565b60405163ffffffff90911681526020016102f5565b6103066109b7565b61036e61051c36600461238f565b6109e7565b6105e56040805160c081018252600080825260208201819052918101829052606081018290526080810182905260a0810191909152506040805160c08101825260695463ffffffff8082168352640100000000820460ff9081166020850152650100000000008304169383019390935266010000000000008104831660608301526a0100000000000000000000810490921660808201526e0100000000000000000000000000009091046fffffffffffffffffffffffffffffffff1660a082015290565b6040516102f59190600060c08201905063ffffffff80845116835260ff602085015116602084015260ff6040850151166040840152806060850151166060840152806080850151166080840152506fffffffffffffffffffffffffffffffff60a08401511660a083015292915050565b6104546109f8565b610306610a02565b61036e6106733660046124c2565b610a32565b6102eb610e3d565b6102eb610e68565b6102eb60675481565b6068546104f1906c01000000000000000000000000900463ffffffff1681565b610306610e93565b61036e6106c7366004612248565b610ec3565b6102eb60665481565b6068546103399067ffffffffffffffff1681565b6102eb610f77565b6102eb610fa2565b6102eb600081565b61072c60017fa04c5bb938ca6fc46d95553abf0a76345ce3e722a30bf4f74928b8e7d852320d612644565b81565b600061076361075f60017f9904ba90dde5696cda05c9e0dab5cbaa0fea005ace4d11218a02ac668dad6377612644565b5490565b905090565b600061076361075f60017f4b6c74f9e688cb39801f2112c14a8c57232a3fc5202e1444126d4bce86eb19ad612644565b6107a0611208565b6107a981611289565b50565b61072c60017f46adcbebc6be8ce551740c29c47c8798210f23f7f4086c41752944352568d5a8612644565b60006107637f65a7ed542fb37fe237fdfbdd70b31598523fe5b32879e307bae27a0bd9581c085490565b60008061080c610856565b5073ffffffffffffffffffffffffffffffffffffffff1673eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee141592915050565b610848611208565b6108528282611346565b5050565b60008061086161118b565b90939092509050565b600061076361075f60017fa11ee3ab75b40e88a0105e935d17cd36c8faee0138320d776c411291bdbbb1a0612644565b6069546000906107639063ffffffff6a010000000000000000000082048116911661265b565b6060610763611484565b61072c60017f383f291819e6d54073bc9a648251d97421076bdd101933c0c022219ce9580637612644565b6108fd611208565b6109076000611545565b565b610911611208565b61085282826115bc565b600061076361075f60017fa04c5bb938ca6fc46d95553abf0a76345ce3e722a30bf4f74928b8e7d852320d612644565b600061076361075f60017f383f291819e6d54073bc9a648251d97421076bdd101933c0c022219ce9580637612644565b610983611208565b6107a981611692565b61072c60017f71ac12829d66ee73d8d95bff50b3589745ce57edae70a3fb111a2342464dc598612644565b600061076361075f60017f46adcbebc6be8ce551740c29c47c8798210f23f7f4086c41752944352568d5a8612644565b6109ef611208565b6107a9816117e8565b6060610763611810565b600061076361075f60017f71ac12829d66ee73d8d95bff50b3589745ce57edae70a3fb111a2342464dc598612644565b600054610100900460ff1615808015610a525750600054600160ff909116105b80610a6c5750303b158015610a6c575060005460ff166001145b610afd576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602e60248201527f496e697469616c697a61626c653a20636f6e747261637420697320616c72656160448201527f647920696e697469616c697a656400000000000000000000000000000000000060648201526084015b60405180910390fd5b600080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff001660011790558015610b5b57600080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00ff166101001790555b610b636118c6565b610b6c8a610ec3565b610b75876117e8565b610b7f8989611346565b610b8886611692565b610bb17f65a7ed542fb37fe237fdfbdd70b31598523fe5b32879e307bae27a0bd9581c08869055565b610be4610bdf60017f71ac12829d66ee73d8d95bff50b3589745ce57edae70a3fb111a2342464dc598612644565b849055565b610c18610c1260017f383f291819e6d54073bc9a648251d97421076bdd101933c0c022219ce9580637612644565b83519055565b610c4f610c4660017f46adcbebc6be8ce551740c29c47c8798210f23f7f4086c41752944352568d5a8612644565b60208401519055565b610c86610c7d60017f9904ba90dde5696cda05c9e0dab5cbaa0fea005ace4d11218a02ac668dad6377612644565b60408401519055565b610cbd610cb460017f52322a25d9f59ea17656545543306b7aef62bc0cc53a0e65ccfa0c75b97aa907612644565b60608401519055565b610cf4610ceb60017f4b6c74f9e688cb39801f2112c14a8c57232a3fc5202e1444126d4bce86eb19ad612644565b60808401519055565b610d2b610d2260017fa04c5bb938ca6fc46d95553abf0a76345ce3e722a30bf4f74928b8e7d852320d612644565b60a08401519055565b610d33611965565b610d408260c001516119cd565b610d4984611cd7565b610d5161089a565b67ffffffffffffffff168667ffffffffffffffff161015610dce576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601f60248201527f53797374656d436f6e6669673a20676173206c696d697420746f6f206c6f77006044820152606401610af4565b8015610e3157600080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00ff169055604051600181527f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb38474024989060200160405180910390a15b50505050505050505050565b61072c60017fa11ee3ab75b40e88a0105e935d17cd36c8faee0138320d776c411291bdbbb1a0612644565b61072c60017f52322a25d9f59ea17656545543306b7aef62bc0cc53a0e65ccfa0c75b97aa907612644565b600061076361075f60017f52322a25d9f59ea17656545543306b7aef62bc0cc53a0e65ccfa0c75b97aa907612644565b610ecb611208565b73ffffffffffffffffffffffffffffffffffffffff8116610f6e576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201527f64647265737300000000000000000000000000000000000000000000000000006064820152608401610af4565b6107a981611545565b61072c60017f9904ba90dde5696cda05c9e0dab5cbaa0fea005ace4d11218a02ac668dad6377612644565b61072c60017f4b6c74f9e688cb39801f2112c14a8c57232a3fc5202e1444126d4bce86eb19ad612644565b9055565b73ffffffffffffffffffffffffffffffffffffffff163b151590565b6000602082511115611081576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603660248201527f476173506179696e67546f6b656e3a20737472696e672063616e6e6f7420626560448201527f2067726561746572207468616e203332206279746573000000000000000000006064820152608401610af4565b61108a82611162565b92915050565b6110f66110be60017f04adb1412b2ddc16fcc0d4538d5c8f07cf9c83abecc6b41f6f69037b708fbcec612644565b74ff000000000000000000000000000000000000000060a086901b1673ffffffffffffffffffffffffffffffffffffffff8716179055565b61112961112460017f657c3582c29b3176614e3a33ddd1ec48352696a04e92b3c0566d72010fa8863d612644565b839055565b61115c61115760017fa48b38a4b44951360fbdcbfaaeae5ed6ae92585412e9841b70ec72ed8cd05764612644565b829055565b50505050565b80516021811061117a5763ec92f9a36000526004601cfd5b9081015160209190910360031b1b90565b600080806111bd61075f60017f04adb1412b2ddc16fcc0d4538d5c8f07cf9c83abecc6b41f6f69037b708fbcec612644565b73ffffffffffffffffffffffffffffffffffffffff811693509050826111fc575073eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee92601292509050565b60a081901c9150509091565b60335473ffffffffffffffffffffffffffffffffffffffff163314610907576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65726044820152606401610af4565b6112b27f65a7ed542fb37fe237fdfbdd70b31598523fe5b32879e307bae27a0bd9581c08829055565b6040805173ffffffffffffffffffffffffffffffffffffffff8316602082015260009101604080517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0818403018152919052905060035b60007f1d2b0bda21d56b8bd12d4f94ebacffdfb35f5e226f84b461103bb8beab6353be8360405161133a9190612327565b60405180910390a35050565b606880547fffffffffffffffffffffffffffffffff0000000000000000ffffffffffffffff166801000000000000000063ffffffff8581169182027fffffffffffffffffffffffffffffffff00000000ffffffffffffffffffffffff16929092176c0100000000000000000000000092851692909202919091179091557f0100000000000000000000000000000000000000000000000000000000000000602083811b67ffffffff000000001690921717606681905560655460408051938401919091528201526000906060015b604080517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08184030181529190529050600160007f1d2b0bda21d56b8bd12d4f94ebacffdfb35f5e226f84b461103bb8beab6353be836040516114779190612327565b60405180910390a3505050565b6060600061149061118b565b5090507fffffffffffffffffffffffff111111111111111111111111111111111111111273ffffffffffffffffffffffffffffffffffffffff82160161150957505060408051808201909152600381527f4554480000000000000000000000000000000000000000000000000000000000602082015290565b61153f61153a61075f60017fa48b38a4b44951360fbdcbfaaeae5ed6ae92585412e9841b70ec72ed8cd05764612644565b61214b565b91505090565b6033805473ffffffffffffffffffffffffffffffffffffffff8381167fffffffffffffffffffffffff0000000000000000000000000000000000000000831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e090600090a35050565b7fff0000000000000000000000000000000000000000000000000000000000000081161561166c576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602160248201527f53797374656d436f6e6669673a207363616c61722065786365656473206d617860448201527f2e000000000000000000000000000000000000000000000000000000000000006064820152608401610af4565b606582905560668190556040805160208101849052908101829052600090606001611414565b61169a61089a565b67ffffffffffffffff168167ffffffffffffffff161015611717576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601f60248201527f53797374656d436f6e6669673a20676173206c696d697420746f6f206c6f77006044820152606401610af4565b630bebc20067ffffffffffffffff8216111561178f576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820181905260248201527f53797374656d436f6e6669673a20676173206c696d697420746f6f20686967686044820152606401610af4565b606880547fffffffffffffffffffffffffffffffffffffffffffffffff00000000000000001667ffffffffffffffff83169081179091556040805160208082019390935281518082039093018352810190526002611309565b6067819055604080516020808201849052825180830390910181529082019091526000611309565b6060600061181c61118b565b5090507fffffffffffffffffffffffff111111111111111111111111111111111111111273ffffffffffffffffffffffffffffffffffffffff82160161189557505060408051808201909152600581527f4574686572000000000000000000000000000000000000000000000000000000602082015290565b61153f61153a61075f60017f657c3582c29b3176614e3a33ddd1ec48352696a04e92b3c0566d72010fa8863d612644565b600054610100900460ff1661195d576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602b60248201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960448201527f6e697469616c697a696e670000000000000000000000000000000000000000006064820152608401610af4565b61090761217f565b61199361075f60017fa11ee3ab75b40e88a0105e935d17cd36c8faee0138320d776c411291bdbbb1a0612644565b600003610907576109076119c860017fa11ee3ab75b40e88a0105e935d17cd36c8faee0138320d776c411291bdbbb1a0612644565b439055565b73ffffffffffffffffffffffffffffffffffffffff811615801590611a1c575073ffffffffffffffffffffffffffffffffffffffff811673eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee14155b8015611a2d5750611a2b610801565b155b156107a957601260ff168173ffffffffffffffffffffffffffffffffffffffff1663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa158015611a82573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611aa69190612687565b60ff1614611b36576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602e60248201527f53797374656d436f6e6669673a2062616420646563696d616c73206f6620676160448201527f7320706179696e6720746f6b656e0000000000000000000000000000000000006064820152608401610af4565b6000611bd18273ffffffffffffffffffffffffffffffffffffffff166306fdde036040518163ffffffff1660e01b8152600401600060405180830381865afa158015611b86573d6000803e3d6000fd5b505050506040513d6000823e601f3d9081017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0168201604052611bcc91908101906126a4565b610fed565b90506000611c238373ffffffffffffffffffffffffffffffffffffffff166395d89b416040518163ffffffff1660e01b8152600401600060405180830381865afa158015611b86573d6000803e3d6000fd5b9050611c328360128484611090565b611c3a610768565b6040517f71cfaa3f00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff858116600483015260126024830152604482018590526064820184905291909116906371cfaa3f90608401600060405180830381600087803b158015611cba57600080fd5b505af1158015611cce573d6000803e3d6000fd5b50505050505050565b8060a001516fffffffffffffffffffffffffffffffff16816060015163ffffffff161115611d87576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603560248201527f53797374656d436f6e6669673a206d696e206261736520666565206d7573742060448201527f6265206c657373207468616e206d6178206261736500000000000000000000006064820152608401610af4565b6001816040015160ff1611611e1e576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602f60248201527f53797374656d436f6e6669673a2064656e6f6d696e61746f72206d757374206260448201527f65206c6172676572207468616e203100000000000000000000000000000000006064820152608401610af4565b6068546080820151825167ffffffffffffffff90921691611e3f919061276f565b63ffffffff161115611ead576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601f60248201527f53797374656d436f6e6669673a20676173206c696d697420746f6f206c6f77006044820152606401610af4565b6000816020015160ff1611611f44576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602f60248201527f53797374656d436f6e6669673a20656c6173746963697479206d756c7469706c60448201527f6965722063616e6e6f74206265203000000000000000000000000000000000006064820152608401610af4565b8051602082015163ffffffff82169160ff90911690611f6490829061278e565b611f6e91906127d8565b63ffffffff1614612001576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603760248201527f53797374656d436f6e6669673a20707265636973696f6e206c6f73732077697460448201527f6820746172676574207265736f75726365206c696d69740000000000000000006064820152608401610af4565b805160698054602084015160408501516060860151608087015160a09097015163ffffffff9687167fffffffffffffffffffffffffffffffffffffffffffffffffffffff00000000009095169490941764010000000060ff94851602177fffffffffffffffffffffffffffffffffffffffffffff0000000000ffffffffff166501000000000093909216929092027fffffffffffffffffffffffffffffffffffffffffffff00000000ffffffffffff1617660100000000000091851691909102177fffff0000000000000000000000000000000000000000ffffffffffffffffffff166a010000000000000000000093909416929092027fffff00000000000000000000000000000000ffffffffffffffffffffffffffff16929092176e0100000000000000000000000000006fffffffffffffffffffffffffffffffff90921691909102179055565b60405160005b82811a1561216157600101612151565b80825260208201838152600082820152505060408101604052919050565b600054610100900460ff16612216576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602b60248201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960448201527f6e697469616c697a696e670000000000000000000000000000000000000000006064820152608401610af4565b61090733611545565b803573ffffffffffffffffffffffffffffffffffffffff8116811461224357600080fd5b919050565b60006020828403121561225a57600080fd5b6122638261221f565b9392505050565b803563ffffffff8116811461224357600080fd5b6000806040838503121561229157600080fd5b61229a8361226a565b91506122a86020840161226a565b90509250929050565b60005b838110156122cc5781810151838201526020016122b4565b8381111561115c5750506000910152565b600081518084526122f58160208601602086016122b1565b601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0169290920160200192915050565b60208152600061226360208301846122dd565b6000806040838503121561234d57600080fd5b50508035926020909101359150565b803567ffffffffffffffff8116811461224357600080fd5b60006020828403121561238657600080fd5b6122638261235c565b6000602082840312156123a157600080fd5b5035919050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b60405160c0810167ffffffffffffffff811182821017156123fa576123fa6123a8565b60405290565b60ff811681146107a957600080fd5b600060e0828403121561242157600080fd5b60405160e0810181811067ffffffffffffffff82111715612444576124446123a8565b6040529050806124538361221f565b81526124616020840161221f565b60208201526124726040840161221f565b60408201526124836060840161221f565b60608201526124946080840161221f565b60808201526124a560a0840161221f565b60a08201526124b660c0840161221f565b60c08201525092915050565b6000806000806000806000806000898b036102808112156124e257600080fd5b6124eb8b61221f565b99506124f960208c0161226a565b985061250760408c0161226a565b975060608b0135965061251c60808c0161235c565b955061252a60a08c0161221f565b945060c07fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff408201121561255c57600080fd5b506125656123d7565b61257160c08c0161226a565b815260e08b013561258181612400565b60208201526101008b013561259581612400565b60408201526125a76101208c0161226a565b60608201526125b96101408c0161226a565b60808201526101608b01356fffffffffffffffffffffffffffffffff811681146125e257600080fd5b60a082015292506125f66101808b0161221f565b91506126068b6101a08c0161240f565b90509295985092959850929598565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b60008282101561265657612656612615565b500390565b600067ffffffffffffffff80831681851680830382111561267e5761267e612615565b01949350505050565b60006020828403121561269957600080fd5b815161226381612400565b6000602082840312156126b657600080fd5b815167ffffffffffffffff808211156126ce57600080fd5b818401915084601f8301126126e257600080fd5b8151818111156126f4576126f46123a8565b604051601f82017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0908116603f0116810190838211818310171561273a5761273a6123a8565b8160405282815287602084870101111561275357600080fd5b6127648360208301602088016122b1565b979650505050505050565b600063ffffffff80831681851680830382111561267e5761267e612615565b600063ffffffff808416806127cc577f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b92169190910492915050565b600063ffffffff808316818516818304811182151516156127fb576127fb612615565b0294935050505056fea164736f6c634300080f000a
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.