Sepolia Testnet

Contract

0x7a9F3773352e4ee0Da6307Cd32C45fE89602129A

Overview

ETH Balance

0 ETH

More Info

Multichain Info

N/A
Transaction Hash
Method
Block
From
To
Trust Signer59153392024-05-16 15:14:00419 days ago1715872440IN
0x7a9F3773...89602129A
0 ETH0.00478427100.06015238

View more zero value Internal Transactions in Advanced View mode

Advanced mode:

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
SignedMintAuthorizer

Compiler Version
v0.8.18+commit.87f61d96

Optimization Enabled:
Yes with 200 runs

Other Settings:
paris EvmVersion

Contract Source Code (Solidity Standard Json-Input format)

// SPDX-License-Identifier: MIT
pragma solidity 0.8.18;

import { ECDSA } from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
import { IAuthorizeMints, SignedMintAuthorization } from "./IAuthorizeMints.sol";

/// @title SignedMintAuthorizer
/// @author molecule.to
contract SignedMintAuthorizer is IAuthorizeMints, Ownable {
    mapping(address => bool) trustedSigners;

    event SignerTrustChanged(address indexed signer, bool trusted);

    constructor(address initialSigner) Ownable() {
        trustedSigners[initialSigner] = true;
        emit SignerTrustChanged(initialSigner, true);
    }

    function trustSigner(address signer, bool trust) external onlyOwner {
        trustedSigners[signer] = trust;
        emit SignerTrustChanged(signer, trust);
    }

    /// @inheritdoc IAuthorizeMints
    /// @dev reverts when signature is not valid or recovered signer is not trusted
    //todo consider using an ERC712 typed signature here
    /// @param signedAuthorization contains encoded SignedMintAuthorization that a trusted signer has agreed upon
    function authorizeMint(address minter, address to, bytes memory signedAuthorization) external view override returns (bool) {
        SignedMintAuthorization memory auth = abi.decode(signedAuthorization, (SignedMintAuthorization));

        bytes32 signedHash = ECDSA.toEthSignedMessageHash(keccak256(abi.encodePacked(minter, to, auth.reservationId, auth.tokenUri)));

        (address signer,) = ECDSA.tryRecover(signedHash, auth.authorization);

        return trustedSigners[signer];
    }

    /// @inheritdoc IAuthorizeMints
    /// @dev this authorizer does not restrict reservations
    function authorizeReservation(address) external pure override returns (bool) {
        return true;
    }

    /// @inheritdoc IAuthorizeMints
    /// @dev this authorizer does not track redemptions
    function redeem(bytes memory) external pure override {
        return;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.0;

import "../Strings.sol";

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS,
        InvalidSignatureV // Deprecated in v4.8
    }

    function _throwError(RecoverError error) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert("ECDSA: invalid signature");
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert("ECDSA: invalid signature length");
        } else if (error == RecoverError.InvalidSignatureS) {
            revert("ECDSA: invalid signature 's' value");
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature` or error string. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength);
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, signature);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
        bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
        uint8 v = uint8((uint256(vs) >> 255) + 27);
        return tryRecover(hash, v, r, s);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     *
     * _Available since v4.2._
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, r, vs);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature);
        }

        return (signer, RecoverError.NoError);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from a `hash`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
        // 32 is the length in bytes of hash,
        // enforced by the type signature above
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, "\x19Ethereum Signed Message:\n32")
            mstore(0x1c, hash)
            message := keccak256(0x00, 0x3c)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from `s`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
    }

    /**
     * @dev Returns an Ethereum Signed Typed Data, created from a
     * `domainSeparator` and a `structHash`. This produces hash corresponding
     * to the one signed with the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
     * JSON-RPC method as part of EIP-712.
     *
     * See {recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, "\x19\x01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            data := keccak256(ptr, 0x42)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Data with intended validator, created from a
     * `validator` and `data` according to the version 0 of EIP-191.
     *
     * See {recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x00", validator, data));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.18;

struct SignedMintAuthorization {
    uint256 reservationId;
    string tokenUri;
    /// eth_sign(keccak256(abi.encodePacked(minter, to, reservationId, tokenUri)))
    bytes authorization;
}

/// @title IAuthorizeMints
/// @author molecule.to
/// @notice a flexible interface to gate token mint calls on another contract, built for IP-NFTs
interface IAuthorizeMints {
    /// @notice checks whether `minter` is allowed to mint a token for `to`. MAY safely revert if this is not the case.
    /// @param data bytes implementation specific data
    function authorizeMint(address minter, address to, bytes memory data) external view returns (bool);

    /// @notice checks whether `reserver` is allowed to reserve a token id on the target contract
    function authorizeReservation(address reserver) external view returns (bool);

    /// @notice called by the gated token contract to signal that a token has been minted and an authorization can be invalidated
    /// @param data implementation specific data
    function redeem(bytes memory data) external;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";
import "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toString(int256 value) internal pure returns (string memory) {
        return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

Settings
{
  "remappings": [
    "ds-test/=lib/forge-std/lib/ds-test/src/",
    "forge-std/=lib/forge-std/src/",
    "@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "@prb/math/=lib/prb-math/src/",
    "@moleculeprotocol/token-vesting/=lib/token-vesting-contract/contracts/",
    "solmate/=lib/solmate/src/",
    "erc721b/=lib/ERC721B/contracts/",
    "safe-global/safe-contracts/=lib/safe-contracts/contracts/",
    "base64/=lib/solidity-base64/contracts/libraries/",
    "@prb/test/=lib/prb-math/node_modules/@prb/test/",
    "ERC721B/=lib/ERC721B/contracts/",
    "erc4626-tests/=lib/openzeppelin-contracts-upgradeable/lib/erc4626-tests/",
    "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/",
    "openzeppelin/=lib/openzeppelin-contracts-upgradeable/contracts/",
    "prb-math/=lib/prb-math/src/",
    "safe-contracts/=lib/safe-contracts/contracts/",
    "solady/=lib/token-vesting-contract/lib/solady/src/",
    "solidity-base64/=lib/solidity-base64/contracts/",
    "token-vesting-contract/=lib/token-vesting-contract/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "paris",
  "libraries": {}
}

Contract ABI

API
[{"inputs":[{"internalType":"address","name":"initialSigner","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"signer","type":"address"},{"indexed":false,"internalType":"bool","name":"trusted","type":"bool"}],"name":"SignerTrustChanged","type":"event"},{"inputs":[{"internalType":"address","name":"minter","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"bytes","name":"signedAuthorization","type":"bytes"}],"name":"authorizeMint","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"authorizeReservation","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes","name":"","type":"bytes"}],"name":"redeem","outputs":[],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"signer","type":"address"},{"internalType":"bool","name":"trust","type":"bool"}],"name":"trustSigner","outputs":[],"stateMutability":"nonpayable","type":"function"}]

608060405234801561001057600080fd5b5060405161094938038061094983398101604081905261002f916100e4565b61003833610094565b6001600160a01b038116600081815260016020818152604092839020805460ff19168317905591519081527fb39bd8776d7d80a652da1a2e04dea01de3833535fe48f18d73037afab67b1069910160405180910390a250610114565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b6000602082840312156100f657600080fd5b81516001600160a01b038116811461010d57600080fd5b9392505050565b610826806101236000396000f3fe608060405234801561001057600080fd5b506004361061007d5760003560e01c80638a0efceb1161005b5780638a0efceb146100c85780638da5cb5b146100db5780639945e3d3146100f6578063f2fde38b1461010757600080fd5b8063508e290014610082578063715018a6146100ab57806374267793146100b5575b600080fd5b6100966100903660046104a0565b50600190565b60405190151581526020015b60405180910390f35b6100b361011a565b005b6100b36100c33660046104bb565b61012e565b6100966100d63660046105e5565b610195565b6000546040516001600160a01b0390911681526020016100a2565b6100b3610104366004610643565b50565b6100b36101153660046104a0565b610256565b6101226102d1565b61012c600061032b565b565b6101366102d1565b6001600160a01b038216600081815260016020908152604091829020805460ff191685151590811790915591519182527fb39bd8776d7d80a652da1a2e04dea01de3833535fe48f18d73037afab67b1069910160405180910390a25050565b600080828060200190518101906101ac91906106f4565b9050600061021b8686846000015185602001516040516020016101d294939291906107a3565b604051602081830303815290604052805190602001207f19457468657265756d205369676e6564204d6573736167653a0a3332000000006000908152601c91909152603c902090565b9050600061022d82846040015161037b565b506001600160a01b031660009081526001602052604090205460ff1693505050505b9392505050565b61025e6102d1565b6001600160a01b0381166102c85760405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201526564647265737360d01b60648201526084015b60405180910390fd5b6101048161032b565b6000546001600160a01b0316331461012c5760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e657260448201526064016102bf565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b60008082516041036103b15760208301516040840151606085015160001a6103a5878285856103c0565b945094505050506103b9565b506000905060025b9250929050565b6000807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08311156103f7575060009050600361047b565b6040805160008082526020820180845289905260ff881692820192909252606081018690526080810185905260019060a0016020604051602081039080840390855afa15801561044b573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b0381166104745760006001925092505061047b565b9150600090505b94509492505050565b80356001600160a01b038116811461049b57600080fd5b919050565b6000602082840312156104b257600080fd5b61024f82610484565b600080604083850312156104ce57600080fd5b6104d783610484565b9150602083013580151581146104ec57600080fd5b809150509250929050565b634e487b7160e01b600052604160045260246000fd5b6040516060810167ffffffffffffffff81118282101715610530576105306104f7565b60405290565b604051601f8201601f1916810167ffffffffffffffff8111828210171561055f5761055f6104f7565b604052919050565b600067ffffffffffffffff821115610581576105816104f7565b50601f01601f191660200190565b600082601f8301126105a057600080fd5b81356105b36105ae82610567565b610536565b8181528460208386010111156105c857600080fd5b816020850160208301376000918101602001919091529392505050565b6000806000606084860312156105fa57600080fd5b61060384610484565b925061061160208501610484565b9150604084013567ffffffffffffffff81111561062d57600080fd5b6106398682870161058f565b9150509250925092565b60006020828403121561065557600080fd5b813567ffffffffffffffff81111561066c57600080fd5b6106788482850161058f565b949350505050565b60005b8381101561069b578181015183820152602001610683565b50506000910152565b60006106b26105ae84610567565b90508281528383830111156106c657600080fd5b61024f836020830184610680565b600082601f8301126106e557600080fd5b61024f838351602085016106a4565b60006020828403121561070657600080fd5b815167ffffffffffffffff8082111561071e57600080fd5b908301906060828603121561073257600080fd5b61073a61050d565b8251815260208301518281111561075057600080fd5b8301601f8101871361076157600080fd5b610770878251602084016106a4565b60208301525060408301518281111561078857600080fd5b610794878286016106d4565b60408301525095945050505050565b60006bffffffffffffffffffffffff19808760601b168352808660601b1660148401525083602883015282516107e0816048850160208701610680565b919091016048019594505050505056fea2646970667358221220a38c1ffe5ad4b792eba77353e8ec9db23721102f751282b6aa4b99877a17e48464736f6c63430008120033000000000000000000000000d7b298c9fb0377124d01d4e826d9d5befb7cd6fe

Deployed Bytecode

0x608060405234801561001057600080fd5b506004361061007d5760003560e01c80638a0efceb1161005b5780638a0efceb146100c85780638da5cb5b146100db5780639945e3d3146100f6578063f2fde38b1461010757600080fd5b8063508e290014610082578063715018a6146100ab57806374267793146100b5575b600080fd5b6100966100903660046104a0565b50600190565b60405190151581526020015b60405180910390f35b6100b361011a565b005b6100b36100c33660046104bb565b61012e565b6100966100d63660046105e5565b610195565b6000546040516001600160a01b0390911681526020016100a2565b6100b3610104366004610643565b50565b6100b36101153660046104a0565b610256565b6101226102d1565b61012c600061032b565b565b6101366102d1565b6001600160a01b038216600081815260016020908152604091829020805460ff191685151590811790915591519182527fb39bd8776d7d80a652da1a2e04dea01de3833535fe48f18d73037afab67b1069910160405180910390a25050565b600080828060200190518101906101ac91906106f4565b9050600061021b8686846000015185602001516040516020016101d294939291906107a3565b604051602081830303815290604052805190602001207f19457468657265756d205369676e6564204d6573736167653a0a3332000000006000908152601c91909152603c902090565b9050600061022d82846040015161037b565b506001600160a01b031660009081526001602052604090205460ff1693505050505b9392505050565b61025e6102d1565b6001600160a01b0381166102c85760405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201526564647265737360d01b60648201526084015b60405180910390fd5b6101048161032b565b6000546001600160a01b0316331461012c5760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e657260448201526064016102bf565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b60008082516041036103b15760208301516040840151606085015160001a6103a5878285856103c0565b945094505050506103b9565b506000905060025b9250929050565b6000807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08311156103f7575060009050600361047b565b6040805160008082526020820180845289905260ff881692820192909252606081018690526080810185905260019060a0016020604051602081039080840390855afa15801561044b573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b0381166104745760006001925092505061047b565b9150600090505b94509492505050565b80356001600160a01b038116811461049b57600080fd5b919050565b6000602082840312156104b257600080fd5b61024f82610484565b600080604083850312156104ce57600080fd5b6104d783610484565b9150602083013580151581146104ec57600080fd5b809150509250929050565b634e487b7160e01b600052604160045260246000fd5b6040516060810167ffffffffffffffff81118282101715610530576105306104f7565b60405290565b604051601f8201601f1916810167ffffffffffffffff8111828210171561055f5761055f6104f7565b604052919050565b600067ffffffffffffffff821115610581576105816104f7565b50601f01601f191660200190565b600082601f8301126105a057600080fd5b81356105b36105ae82610567565b610536565b8181528460208386010111156105c857600080fd5b816020850160208301376000918101602001919091529392505050565b6000806000606084860312156105fa57600080fd5b61060384610484565b925061061160208501610484565b9150604084013567ffffffffffffffff81111561062d57600080fd5b6106398682870161058f565b9150509250925092565b60006020828403121561065557600080fd5b813567ffffffffffffffff81111561066c57600080fd5b6106788482850161058f565b949350505050565b60005b8381101561069b578181015183820152602001610683565b50506000910152565b60006106b26105ae84610567565b90508281528383830111156106c657600080fd5b61024f836020830184610680565b600082601f8301126106e557600080fd5b61024f838351602085016106a4565b60006020828403121561070657600080fd5b815167ffffffffffffffff8082111561071e57600080fd5b908301906060828603121561073257600080fd5b61073a61050d565b8251815260208301518281111561075057600080fd5b8301601f8101871361076157600080fd5b610770878251602084016106a4565b60208301525060408301518281111561078857600080fd5b610794878286016106d4565b60408301525095945050505050565b60006bffffffffffffffffffffffff19808760601b168352808660601b1660148401525083602883015282516107e0816048850160208701610680565b919091016048019594505050505056fea2646970667358221220a38c1ffe5ad4b792eba77353e8ec9db23721102f751282b6aa4b99877a17e48464736f6c63430008120033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

000000000000000000000000d7b298c9fb0377124d01d4e826d9d5befb7cd6fe

-----Decoded View---------------
Arg [0] : initialSigner (address): 0xd7B298c9fB0377124d01D4E826d9D5beFB7CD6FE

-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 000000000000000000000000d7b298c9fb0377124d01d4e826d9d5befb7cd6fe


Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.