Source Code
Overview
ETH Balance
0 ETH
More Info
ContractCreator
Multichain Info
N/A
Latest 1 from a total of 1 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Trust Signer | 5915339 | 419 days ago | IN | 0 ETH | 0.00478427 |
View more zero value Internal Transactions in Advanced View mode
Advanced mode:
Loading...
Loading
Contract Name:
SignedMintAuthorizer
Compiler Version
v0.8.18+commit.87f61d96
Optimization Enabled:
Yes with 200 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity 0.8.18; import { ECDSA } from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol"; import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol"; import { IAuthorizeMints, SignedMintAuthorization } from "./IAuthorizeMints.sol"; /// @title SignedMintAuthorizer /// @author molecule.to contract SignedMintAuthorizer is IAuthorizeMints, Ownable { mapping(address => bool) trustedSigners; event SignerTrustChanged(address indexed signer, bool trusted); constructor(address initialSigner) Ownable() { trustedSigners[initialSigner] = true; emit SignerTrustChanged(initialSigner, true); } function trustSigner(address signer, bool trust) external onlyOwner { trustedSigners[signer] = trust; emit SignerTrustChanged(signer, trust); } /// @inheritdoc IAuthorizeMints /// @dev reverts when signature is not valid or recovered signer is not trusted //todo consider using an ERC712 typed signature here /// @param signedAuthorization contains encoded SignedMintAuthorization that a trusted signer has agreed upon function authorizeMint(address minter, address to, bytes memory signedAuthorization) external view override returns (bool) { SignedMintAuthorization memory auth = abi.decode(signedAuthorization, (SignedMintAuthorization)); bytes32 signedHash = ECDSA.toEthSignedMessageHash(keccak256(abi.encodePacked(minter, to, auth.reservationId, auth.tokenUri))); (address signer,) = ECDSA.tryRecover(signedHash, auth.authorization); return trustedSigners[signer]; } /// @inheritdoc IAuthorizeMints /// @dev this authorizer does not restrict reservations function authorizeReservation(address) external pure override returns (bool) { return true; } /// @inheritdoc IAuthorizeMints /// @dev this authorizer does not track redemptions function redeem(bytes memory) external pure override { return; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.0; import "../Strings.sol"; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS, InvalidSignatureV // Deprecated in v4.8 } function _throwError(RecoverError error) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert("ECDSA: invalid signature"); } else if (error == RecoverError.InvalidSignatureLength) { revert("ECDSA: invalid signature length"); } else if (error == RecoverError.InvalidSignatureS) { revert("ECDSA: invalid signature 's' value"); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature` or error string. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, signature); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. * * _Available since v4.2._ */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, r, vs); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. * * _Available since v4.3._ */ function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature); } return (signer, RecoverError.NoError); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, v, r, s); _throwError(error); return recovered; } /** * @dev Returns an Ethereum Signed Message, created from a `hash`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) { // 32 is the length in bytes of hash, // enforced by the type signature above /// @solidity memory-safe-assembly assembly { mstore(0x00, "\x19Ethereum Signed Message:\n32") mstore(0x1c, hash) message := keccak256(0x00, 0x3c) } } /** * @dev Returns an Ethereum Signed Message, created from `s`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s)); } /** * @dev Returns an Ethereum Signed Typed Data, created from a * `domainSeparator` and a `structHash`. This produces hash corresponding * to the one signed with the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] * JSON-RPC method as part of EIP-712. * * See {recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) { /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) mstore(ptr, "\x19\x01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) data := keccak256(ptr, 0x42) } } /** * @dev Returns an Ethereum Signed Data with intended validator, created from a * `validator` and `data` according to the version 0 of EIP-191. * * See {recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19\x00", validator, data)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.18; struct SignedMintAuthorization { uint256 reservationId; string tokenUri; /// eth_sign(keccak256(abi.encodePacked(minter, to, reservationId, tokenUri))) bytes authorization; } /// @title IAuthorizeMints /// @author molecule.to /// @notice a flexible interface to gate token mint calls on another contract, built for IP-NFTs interface IAuthorizeMints { /// @notice checks whether `minter` is allowed to mint a token for `to`. MAY safely revert if this is not the case. /// @param data bytes implementation specific data function authorizeMint(address minter, address to, bytes memory data) external view returns (bool); /// @notice checks whether `reserver` is allowed to reserve a token id on the target contract function authorizeReservation(address reserver) external view returns (bool); /// @notice called by the gated token contract to signal that a token has been minted and an authorization can be invalidated /// @param data implementation specific data function redeem(bytes memory data) external; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol) pragma solidity ^0.8.0; import "./math/Math.sol"; import "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant _SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toString(int256 value) internal pure returns (string memory) { return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value)))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return keccak256(bytes(a)) == keccak256(bytes(b)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1, "Math: mulDiv overflow"); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.0; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
{ "remappings": [ "ds-test/=lib/forge-std/lib/ds-test/src/", "forge-std/=lib/forge-std/src/", "@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/", "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/", "@prb/math/=lib/prb-math/src/", "@moleculeprotocol/token-vesting/=lib/token-vesting-contract/contracts/", "solmate/=lib/solmate/src/", "erc721b/=lib/ERC721B/contracts/", "safe-global/safe-contracts/=lib/safe-contracts/contracts/", "base64/=lib/solidity-base64/contracts/libraries/", "@prb/test/=lib/prb-math/node_modules/@prb/test/", "ERC721B/=lib/ERC721B/contracts/", "erc4626-tests/=lib/openzeppelin-contracts-upgradeable/lib/erc4626-tests/", "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/", "openzeppelin-contracts/=lib/openzeppelin-contracts/", "openzeppelin/=lib/openzeppelin-contracts-upgradeable/contracts/", "prb-math/=lib/prb-math/src/", "safe-contracts/=lib/safe-contracts/contracts/", "solady/=lib/token-vesting-contract/lib/solady/src/", "solidity-base64/=lib/solidity-base64/contracts/", "token-vesting-contract/=lib/token-vesting-contract/" ], "optimizer": { "enabled": true, "runs": 200 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "ipfs", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "paris", "libraries": {} }
Contract ABI
API[{"inputs":[{"internalType":"address","name":"initialSigner","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"signer","type":"address"},{"indexed":false,"internalType":"bool","name":"trusted","type":"bool"}],"name":"SignerTrustChanged","type":"event"},{"inputs":[{"internalType":"address","name":"minter","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"bytes","name":"signedAuthorization","type":"bytes"}],"name":"authorizeMint","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"authorizeReservation","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes","name":"","type":"bytes"}],"name":"redeem","outputs":[],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"signer","type":"address"},{"internalType":"bool","name":"trust","type":"bool"}],"name":"trustSigner","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
608060405234801561001057600080fd5b5060405161094938038061094983398101604081905261002f916100e4565b61003833610094565b6001600160a01b038116600081815260016020818152604092839020805460ff19168317905591519081527fb39bd8776d7d80a652da1a2e04dea01de3833535fe48f18d73037afab67b1069910160405180910390a250610114565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b6000602082840312156100f657600080fd5b81516001600160a01b038116811461010d57600080fd5b9392505050565b610826806101236000396000f3fe608060405234801561001057600080fd5b506004361061007d5760003560e01c80638a0efceb1161005b5780638a0efceb146100c85780638da5cb5b146100db5780639945e3d3146100f6578063f2fde38b1461010757600080fd5b8063508e290014610082578063715018a6146100ab57806374267793146100b5575b600080fd5b6100966100903660046104a0565b50600190565b60405190151581526020015b60405180910390f35b6100b361011a565b005b6100b36100c33660046104bb565b61012e565b6100966100d63660046105e5565b610195565b6000546040516001600160a01b0390911681526020016100a2565b6100b3610104366004610643565b50565b6100b36101153660046104a0565b610256565b6101226102d1565b61012c600061032b565b565b6101366102d1565b6001600160a01b038216600081815260016020908152604091829020805460ff191685151590811790915591519182527fb39bd8776d7d80a652da1a2e04dea01de3833535fe48f18d73037afab67b1069910160405180910390a25050565b600080828060200190518101906101ac91906106f4565b9050600061021b8686846000015185602001516040516020016101d294939291906107a3565b604051602081830303815290604052805190602001207f19457468657265756d205369676e6564204d6573736167653a0a3332000000006000908152601c91909152603c902090565b9050600061022d82846040015161037b565b506001600160a01b031660009081526001602052604090205460ff1693505050505b9392505050565b61025e6102d1565b6001600160a01b0381166102c85760405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201526564647265737360d01b60648201526084015b60405180910390fd5b6101048161032b565b6000546001600160a01b0316331461012c5760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e657260448201526064016102bf565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b60008082516041036103b15760208301516040840151606085015160001a6103a5878285856103c0565b945094505050506103b9565b506000905060025b9250929050565b6000807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08311156103f7575060009050600361047b565b6040805160008082526020820180845289905260ff881692820192909252606081018690526080810185905260019060a0016020604051602081039080840390855afa15801561044b573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b0381166104745760006001925092505061047b565b9150600090505b94509492505050565b80356001600160a01b038116811461049b57600080fd5b919050565b6000602082840312156104b257600080fd5b61024f82610484565b600080604083850312156104ce57600080fd5b6104d783610484565b9150602083013580151581146104ec57600080fd5b809150509250929050565b634e487b7160e01b600052604160045260246000fd5b6040516060810167ffffffffffffffff81118282101715610530576105306104f7565b60405290565b604051601f8201601f1916810167ffffffffffffffff8111828210171561055f5761055f6104f7565b604052919050565b600067ffffffffffffffff821115610581576105816104f7565b50601f01601f191660200190565b600082601f8301126105a057600080fd5b81356105b36105ae82610567565b610536565b8181528460208386010111156105c857600080fd5b816020850160208301376000918101602001919091529392505050565b6000806000606084860312156105fa57600080fd5b61060384610484565b925061061160208501610484565b9150604084013567ffffffffffffffff81111561062d57600080fd5b6106398682870161058f565b9150509250925092565b60006020828403121561065557600080fd5b813567ffffffffffffffff81111561066c57600080fd5b6106788482850161058f565b949350505050565b60005b8381101561069b578181015183820152602001610683565b50506000910152565b60006106b26105ae84610567565b90508281528383830111156106c657600080fd5b61024f836020830184610680565b600082601f8301126106e557600080fd5b61024f838351602085016106a4565b60006020828403121561070657600080fd5b815167ffffffffffffffff8082111561071e57600080fd5b908301906060828603121561073257600080fd5b61073a61050d565b8251815260208301518281111561075057600080fd5b8301601f8101871361076157600080fd5b610770878251602084016106a4565b60208301525060408301518281111561078857600080fd5b610794878286016106d4565b60408301525095945050505050565b60006bffffffffffffffffffffffff19808760601b168352808660601b1660148401525083602883015282516107e0816048850160208701610680565b919091016048019594505050505056fea2646970667358221220a38c1ffe5ad4b792eba77353e8ec9db23721102f751282b6aa4b99877a17e48464736f6c63430008120033000000000000000000000000d7b298c9fb0377124d01d4e826d9d5befb7cd6fe
Deployed Bytecode
0x608060405234801561001057600080fd5b506004361061007d5760003560e01c80638a0efceb1161005b5780638a0efceb146100c85780638da5cb5b146100db5780639945e3d3146100f6578063f2fde38b1461010757600080fd5b8063508e290014610082578063715018a6146100ab57806374267793146100b5575b600080fd5b6100966100903660046104a0565b50600190565b60405190151581526020015b60405180910390f35b6100b361011a565b005b6100b36100c33660046104bb565b61012e565b6100966100d63660046105e5565b610195565b6000546040516001600160a01b0390911681526020016100a2565b6100b3610104366004610643565b50565b6100b36101153660046104a0565b610256565b6101226102d1565b61012c600061032b565b565b6101366102d1565b6001600160a01b038216600081815260016020908152604091829020805460ff191685151590811790915591519182527fb39bd8776d7d80a652da1a2e04dea01de3833535fe48f18d73037afab67b1069910160405180910390a25050565b600080828060200190518101906101ac91906106f4565b9050600061021b8686846000015185602001516040516020016101d294939291906107a3565b604051602081830303815290604052805190602001207f19457468657265756d205369676e6564204d6573736167653a0a3332000000006000908152601c91909152603c902090565b9050600061022d82846040015161037b565b506001600160a01b031660009081526001602052604090205460ff1693505050505b9392505050565b61025e6102d1565b6001600160a01b0381166102c85760405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201526564647265737360d01b60648201526084015b60405180910390fd5b6101048161032b565b6000546001600160a01b0316331461012c5760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e657260448201526064016102bf565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b60008082516041036103b15760208301516040840151606085015160001a6103a5878285856103c0565b945094505050506103b9565b506000905060025b9250929050565b6000807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08311156103f7575060009050600361047b565b6040805160008082526020820180845289905260ff881692820192909252606081018690526080810185905260019060a0016020604051602081039080840390855afa15801561044b573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b0381166104745760006001925092505061047b565b9150600090505b94509492505050565b80356001600160a01b038116811461049b57600080fd5b919050565b6000602082840312156104b257600080fd5b61024f82610484565b600080604083850312156104ce57600080fd5b6104d783610484565b9150602083013580151581146104ec57600080fd5b809150509250929050565b634e487b7160e01b600052604160045260246000fd5b6040516060810167ffffffffffffffff81118282101715610530576105306104f7565b60405290565b604051601f8201601f1916810167ffffffffffffffff8111828210171561055f5761055f6104f7565b604052919050565b600067ffffffffffffffff821115610581576105816104f7565b50601f01601f191660200190565b600082601f8301126105a057600080fd5b81356105b36105ae82610567565b610536565b8181528460208386010111156105c857600080fd5b816020850160208301376000918101602001919091529392505050565b6000806000606084860312156105fa57600080fd5b61060384610484565b925061061160208501610484565b9150604084013567ffffffffffffffff81111561062d57600080fd5b6106398682870161058f565b9150509250925092565b60006020828403121561065557600080fd5b813567ffffffffffffffff81111561066c57600080fd5b6106788482850161058f565b949350505050565b60005b8381101561069b578181015183820152602001610683565b50506000910152565b60006106b26105ae84610567565b90508281528383830111156106c657600080fd5b61024f836020830184610680565b600082601f8301126106e557600080fd5b61024f838351602085016106a4565b60006020828403121561070657600080fd5b815167ffffffffffffffff8082111561071e57600080fd5b908301906060828603121561073257600080fd5b61073a61050d565b8251815260208301518281111561075057600080fd5b8301601f8101871361076157600080fd5b610770878251602084016106a4565b60208301525060408301518281111561078857600080fd5b610794878286016106d4565b60408301525095945050505050565b60006bffffffffffffffffffffffff19808760601b168352808660601b1660148401525083602883015282516107e0816048850160208701610680565b919091016048019594505050505056fea2646970667358221220a38c1ffe5ad4b792eba77353e8ec9db23721102f751282b6aa4b99877a17e48464736f6c63430008120033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000d7b298c9fb0377124d01d4e826d9d5befb7cd6fe
-----Decoded View---------------
Arg [0] : initialSigner (address): 0xd7B298c9fB0377124d01D4E826d9D5beFB7CD6FE
-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 000000000000000000000000d7b298c9fb0377124d01d4e826d9d5befb7cd6fe
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.