Source Code
Overview
ETH Balance
0 ETH
More Info
ContractCreator
Multichain Info
N/A
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
MetadataService
Compiler Version
v0.8.25+commit.b61c2a91
Optimization Enabled:
Yes with 200 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.25; import {IMetadataService} from "../../interfaces/service/IMetadataService.sol"; import {IRegistry} from "../../interfaces/common/IRegistry.sol"; import {Strings} from "@openzeppelin/contracts/utils/Strings.sol"; contract MetadataService is IMetadataService { using Strings for string; /** * @inheritdoc IMetadataService */ address public immutable REGISTRY; /** * @inheritdoc IMetadataService */ mapping(address entity => string value) public metadataURL; constructor( address registry ) { REGISTRY = registry; } /** * @inheritdoc IMetadataService */ function setMetadataURL( string calldata metadataURL_ ) external { if (!IRegistry(REGISTRY).isEntity(msg.sender)) { revert NotEntity(); } if (metadataURL[msg.sender].equal(metadataURL_)) { revert AlreadySet(); } metadataURL[msg.sender] = metadataURL_; emit SetMetadataURL(msg.sender, metadataURL_); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface IMetadataService { error AlreadySet(); error NotEntity(); /** * @notice Emitted when a metadata URL is set for an entity. * @param entity address of the entity * @param metadataURL new metadata URL of the entity */ event SetMetadataURL(address indexed entity, string metadataURL); /** * @notice Get the registry's address. * @return address of the registry */ function REGISTRY() external view returns (address); /** * @notice Get a URL with an entity's metadata. * @param entity address of the entity * @return metadata URL of the entity */ function metadataURL( address entity ) external view returns (string memory); /** * @notice Set a new metadata URL for a calling entity. * @param metadataURL new metadata URL of the entity */ function setMetadataURL( string calldata metadataURL ) external; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface IRegistry { error EntityNotExist(); /** * @notice Emitted when an entity is added. * @param entity address of the added entity */ event AddEntity(address indexed entity); /** * @notice Get if a given address is an entity. * @param account address to check * @return if the given address is an entity */ function isEntity( address account ) external view returns (bool); /** * @notice Get a total number of entities. * @return total number of entities added */ function totalEntities() external view returns (uint256); /** * @notice Get an entity given its index. * @param index index of the entity to get * @return address of the entity */ function entity( uint256 index ) external view returns (address); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol) pragma solidity ^0.8.20; import {Math} from "./math/Math.sol"; import {SignedMath} from "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned(int256 value) internal pure returns (string memory) { return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol) pragma solidity ^0.8.20; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { /** * @dev Muldiv operation overflow. */ error MathOverflowedMulDiv(); enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an overflow flag. */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an overflow flag. */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. return a / b; } // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (denominator <= prod1) { revert MathOverflowedMulDiv(); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
{ "remappings": [ "forge-std/=lib/forge-std/src/", "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/", "@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/", "ds-test/=lib/openzeppelin-contracts/lib/forge-std/lib/ds-test/src/", "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/", "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/", "openzeppelin-contracts/=lib/openzeppelin-contracts/" ], "optimizer": { "enabled": true, "runs": 200 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "ipfs", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "paris", "viaIR": true, "libraries": {} }
[{"inputs":[{"internalType":"address","name":"registry","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AlreadySet","type":"error"},{"inputs":[],"name":"NotEntity","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"entity","type":"address"},{"indexed":false,"internalType":"string","name":"metadataURL","type":"string"}],"name":"SetMetadataURL","type":"event"},{"inputs":[],"name":"REGISTRY","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"entity","type":"address"}],"name":"metadataURL","outputs":[{"internalType":"string","name":"value","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"string","name":"metadataURL_","type":"string"}],"name":"setMetadataURL","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
60a034606c57601f6105e238819003918201601f19168301916001600160401b03831184841017607157808492602094604052833981010312606c57516001600160a01b0381168103606c5760805260405161055a9081610088823960805181818160a801526103de0152f35b600080fd5b634e487b7160e01b600052604160045260246000fdfe6080604081815260048036101561001557600080fd5b600092833560e01c90816306433b1b146103ca575080634edb8f39146103435763747daec51461004457600080fd5b3461033f5760208060031936011261033b5781359267ffffffffffffffff808511610337573660238601121561033757848401359081116103375760249485810190368784830101116103335783516302910f8b60e31b81523387820152858189817f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03165afa9081156103295789916102ef575b50156102df573388528785526100f784892061047f565b96601f840191601f19978884169987516101138a8d0182610447565b87815289810190888883378d8b8a8301015282519051908b82821494856102ce575b50505050506102c0575090899493929133865285885286862092610159845461040d565b90601f8211610274575b50508598601f86116001146101e5575091848094927ff8dac27f20d622a0759394313683066cb713a406633a3a7dde8799654015ea649a89979589936101d8575b5050508360011b906000198560031b1c19161790555b8184519780895288015283870137840101528133948101030190a280f35b01013590503880806101a4565b85169183875288872092875b818110610258575091869593917ff8dac27f20d622a0759394313683066cb713a406633a3a7dde8799654015ea649b878b9997951061023c575b50505050600183811b0190556101ba565b60001960f88860031b161c19920101351690553880808061022b565b838c0183013585559a8a019a8d98506001909401938a016101f1565b909192938095969752888c209060051c8101918988106102b6575b90601f8d989796959493920160051c01905b81811015610163579687558b966001016102a1565b909150819061028f565b865163a741a04560e01b8152fd5b012091201490503880808b81610135565b835163184849cf60e01b81528690fd5b90508581813d8311610322575b6103068183610447565b8101031261031e5751801515810361031e57386100e0565b8880fd5b503d6102fc565b85513d8b823e3d90fd5b8780fd5b8580fd5b8380fd5b8280fd5b5091346103c757602092836003193601126103c357356001600160a01b038116908190036103c3578193915282815261037d82842061047f565b82519382859384528251928382860152825b8481106103ad57505050828201840152601f01601f19168101030190f35b818101830151888201880152879550820161038f565b5080fd5b80fd5b8490346103c357816003193601126103c3577f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b90600182811c9216801561043d575b602083101461042757565b634e487b7160e01b600052602260045260246000fd5b91607f169161041c565b90601f8019910116810190811067ffffffffffffffff82111761046957604052565b634e487b7160e01b600052604160045260246000fd5b906040519182600082546104928161040d565b9081845260209460019160018116908160001461050257506001146104c3575b5050506104c192500383610447565b565b600090815285812095935091905b8183106104ea5750506104c193508201013880806104b2565b855488840185015294850194879450918301916104d1565b925050506104c194925060ff191682840152151560051b8201013880806104b256fea2646970667358221220e8faaeddfdb6693a57645da0bdfce21e81578063356d9835496f56095c86148264736f6c634300081900330000000000000000000000006fee87ff83799eb1eb5314b10296c4920c39803f
Deployed Bytecode
0x6080604081815260048036101561001557600080fd5b600092833560e01c90816306433b1b146103ca575080634edb8f39146103435763747daec51461004457600080fd5b3461033f5760208060031936011261033b5781359267ffffffffffffffff808511610337573660238601121561033757848401359081116103375760249485810190368784830101116103335783516302910f8b60e31b81523387820152858189817f0000000000000000000000006fee87ff83799eb1eb5314b10296c4920c39803f6001600160a01b03165afa9081156103295789916102ef575b50156102df573388528785526100f784892061047f565b96601f840191601f19978884169987516101138a8d0182610447565b87815289810190888883378d8b8a8301015282519051908b82821494856102ce575b50505050506102c0575090899493929133865285885286862092610159845461040d565b90601f8211610274575b50508598601f86116001146101e5575091848094927ff8dac27f20d622a0759394313683066cb713a406633a3a7dde8799654015ea649a89979589936101d8575b5050508360011b906000198560031b1c19161790555b8184519780895288015283870137840101528133948101030190a280f35b01013590503880806101a4565b85169183875288872092875b818110610258575091869593917ff8dac27f20d622a0759394313683066cb713a406633a3a7dde8799654015ea649b878b9997951061023c575b50505050600183811b0190556101ba565b60001960f88860031b161c19920101351690553880808061022b565b838c0183013585559a8a019a8d98506001909401938a016101f1565b909192938095969752888c209060051c8101918988106102b6575b90601f8d989796959493920160051c01905b81811015610163579687558b966001016102a1565b909150819061028f565b865163a741a04560e01b8152fd5b012091201490503880808b81610135565b835163184849cf60e01b81528690fd5b90508581813d8311610322575b6103068183610447565b8101031261031e5751801515810361031e57386100e0565b8880fd5b503d6102fc565b85513d8b823e3d90fd5b8780fd5b8580fd5b8380fd5b8280fd5b5091346103c757602092836003193601126103c357356001600160a01b038116908190036103c3578193915282815261037d82842061047f565b82519382859384528251928382860152825b8481106103ad57505050828201840152601f01601f19168101030190f35b818101830151888201880152879550820161038f565b5080fd5b80fd5b8490346103c357816003193601126103c3577f0000000000000000000000006fee87ff83799eb1eb5314b10296c4920c39803f6001600160a01b03168152602090f35b90600182811c9216801561043d575b602083101461042757565b634e487b7160e01b600052602260045260246000fd5b91607f169161041c565b90601f8019910116810190811067ffffffffffffffff82111761046957604052565b634e487b7160e01b600052604160045260246000fd5b906040519182600082546104928161040d565b9081845260209460019160018116908160001461050257506001146104c3575b5050506104c192500383610447565b565b600090815285812095935091905b8183106104ea5750506104c193508201013880806104b2565b855488840185015294850194879450918301916104d1565b925050506104c194925060ff191682840152151560051b8201013880806104b256fea2646970667358221220e8faaeddfdb6693a57645da0bdfce21e81578063356d9835496f56095c86148264736f6c63430008190033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
0000000000000000000000006fee87ff83799eb1eb5314b10296c4920c39803f
-----Decoded View---------------
Arg [0] : registry (address): 0x6fEe87ff83799EB1eB5314B10296C4920C39803f
-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 0000000000000000000000006fee87ff83799eb1eb5314b10296c4920c39803f
Loading...
Loading
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.