Sepolia Testnet

Contract

0x0B2b3D1d87933C5009C49EffBAe279cdF39c6C96

Overview

ETH Balance

0 ETH

More Info

Multichain Info

N/A
Transaction Hash
Method
Block
From
To
Amount
Execute Emergenc...88857972025-08-01 0:07:24110 days ago1754006844IN
0x0B2b3D1d...dF39c6C96
0 ETH0.000003640.00176402
Execute Emergenc...88857892025-08-01 0:05:36110 days ago1754006736IN
0x0B2b3D1d...dF39c6C96
0 ETH0.000006390.00191224
Execute Emergenc...88857822025-08-01 0:04:12110 days ago1754006652IN
0x0B2b3D1d...dF39c6C96
0 ETH0.000005510.0026737
Execute Emergenc...88857472025-07-31 23:56:36110 days ago1754006196IN
0x0B2b3D1d...dF39c6C96
0 ETH0.000002330.00127847
Execute Emergenc...80480582025-04-04 9:25:24228 days ago1743758724IN
0x0B2b3D1d...dF39c6C96
0 ETH0.002391271.32949979
Execute Emergenc...76196042025-02-01 20:29:12290 days ago1738441752IN
0x0B2b3D1d...dF39c6C96
0 ETH0.001434991.3362228

Latest 1 internal transaction

Advanced mode:
Parent Transaction Hash Method Block
From
To
Amount
0x6101e06075896992025-01-28 15:41:00294 days ago1738078860  Contract Creation0 ETH
Loading...
Loading

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
EmergencyUpgradeBoard

Compiler Version
v0.8.24+commit.e11b9ed9

Optimization Enabled:
Yes with 200 runs

Other Settings:
cancun EvmVersion

Contract Source Code (Solidity Standard Json-Input format)

// SPDX-License-Identifier: MIT

pragma solidity 0.8.24;

import {EIP712} from "@openzeppelin/contracts/utils/cryptography/EIP712.sol";
import {SignatureChecker} from "@openzeppelin/contracts/utils/cryptography/SignatureChecker.sol";
import {IProtocolUpgradeHandler} from "./interfaces/IProtocolUpgradeHandler.sol";

/// @title Emergency Upgrade Board
/// @author Matter Labs
/// @custom:security-contact [email protected]
contract EmergencyUpgradeBoard is EIP712 {
    using SignatureChecker for address;

    /// @notice Address of the contract, which manages protocol upgrades.
    IProtocolUpgradeHandler public immutable PROTOCOL_UPGRADE_HANDLER;

    /// @notice The address of the Security Council.
    address public immutable SECURITY_COUNCIL;

    /// @notice The address of the guardians.
    address public immutable GUARDIANS;

    /// @notice The address of the ZK Foundation multisig.
    address public immutable ZK_FOUNDATION_SAFE;

    /// @dev EIP-712 TypeHash for the emergency protocol upgrade execution approved by the guardians.
    bytes32 internal constant EXECUTE_EMERGENCY_UPGRADE_GUARDIANS_TYPEHASH =
        keccak256("ExecuteEmergencyUpgradeGuardians(bytes32 id)");

    /// @dev EIP-712 TypeHash for the emergency protocol upgrade execution approved by the Security Council.
    bytes32 internal constant EXECUTE_EMERGENCY_UPGRADE_SECURITY_COUNCIL_TYPEHASH =
        keccak256("ExecuteEmergencyUpgradeSecurityCouncil(bytes32 id)");

    /// @dev EIP-712 TypeHash for the emergency protocol upgrade execution approved by the ZK Foundation.
    bytes32 internal constant EXECUTE_EMERGENCY_UPGRADE_ZK_FOUNDATION_TYPEHASH =
        keccak256("ExecuteEmergencyUpgradeZKFoundation(bytes32 id)");

    /// @dev Initializes the Emergency Upgrade Board contract with setup for EIP-712.
    /// @param _protocolUpgradeHandler The address of the protocol upgrade handler contract, responsible for executing the upgrades.
    /// @param _securityCouncil The address of the Security Council multisig.
    /// @param _guardians The address of the Guardians multisig.
    /// @param _zkFoundation The address of the ZK Foundation Safe multisig.
    constructor(
        IProtocolUpgradeHandler _protocolUpgradeHandler,
        address _securityCouncil,
        address _guardians,
        address _zkFoundation
    ) EIP712("EmergencyUpgradeBoard", "1") {
        PROTOCOL_UPGRADE_HANDLER = _protocolUpgradeHandler;
        SECURITY_COUNCIL = _securityCouncil;
        GUARDIANS = _guardians;
        ZK_FOUNDATION_SAFE = _zkFoundation;
    }

    /// @notice Executes an emergency protocol upgrade approved by the Security Council, Guardians and ZK Foundation.
    /// @param _calls Array of `Call` structures specifying the calls to be made in the upgrade.
    /// @param _salt A bytes32 value used for creating unique upgrade proposal hashes.
    /// @param _guardiansSignatures Encoded signers & signatures from the guardians multisig, required to authorize the emergency upgrade.
    /// @param _securityCouncilSignatures Encoded signers & signatures from the Security Council multisig, required to authorize the emergency upgrade.
    /// @param _zkFoundationSignatures Signatures from the ZK Foundation multisig, required to authorize the emergency upgrade.
    function executeEmergencyUpgrade(
        IProtocolUpgradeHandler.Call[] calldata _calls,
        bytes32 _salt,
        bytes calldata _guardiansSignatures,
        bytes calldata _securityCouncilSignatures,
        bytes calldata _zkFoundationSignatures
    ) external {
        IProtocolUpgradeHandler.UpgradeProposal memory upgradeProposal =
            IProtocolUpgradeHandler.UpgradeProposal({calls: _calls, salt: _salt, executor: address(this)});
        bytes32 id = keccak256(abi.encode(upgradeProposal));

        bytes32 guardiansDigest =
            _hashTypedDataV4(keccak256(abi.encode(EXECUTE_EMERGENCY_UPGRADE_GUARDIANS_TYPEHASH, id)));
        require(
            GUARDIANS.isValidERC1271SignatureNow(guardiansDigest, _guardiansSignatures), "Invalid guardians signatures"
        );

        bytes32 securityCouncilDigest =
            _hashTypedDataV4(keccak256(abi.encode(EXECUTE_EMERGENCY_UPGRADE_SECURITY_COUNCIL_TYPEHASH, id)));
        require(
            SECURITY_COUNCIL.isValidERC1271SignatureNow(securityCouncilDigest, _securityCouncilSignatures),
            "Invalid Security Council signatures"
        );

        bytes32 zkFoundationDigest =
            _hashTypedDataV4(keccak256(abi.encode(EXECUTE_EMERGENCY_UPGRADE_ZK_FOUNDATION_TYPEHASH, id)));
        require(
            ZK_FOUNDATION_SAFE.isValidSignatureNow(zkFoundationDigest, _zkFoundationSignatures),
            "Invalid ZK Foundation signatures"
        );

        PROTOCOL_UPGRADE_HANDLER.executeEmergencyUpgrade(upgradeProposal);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/EIP712.sol)

pragma solidity ^0.8.20;

import {MessageHashUtils} from "./MessageHashUtils.sol";
import {ShortStrings, ShortString} from "../ShortStrings.sol";
import {IERC5267} from "../../interfaces/IERC5267.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
 * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
 * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
 * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
 * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
 * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
 *
 * @custom:oz-upgrades-unsafe-allow state-variable-immutable
 */
abstract contract EIP712 is IERC5267 {
    using ShortStrings for *;

    bytes32 private constant TYPE_HASH =
        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");

    // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
    // invalidate the cached domain separator if the chain id changes.
    bytes32 private immutable _cachedDomainSeparator;
    uint256 private immutable _cachedChainId;
    address private immutable _cachedThis;

    bytes32 private immutable _hashedName;
    bytes32 private immutable _hashedVersion;

    ShortString private immutable _name;
    ShortString private immutable _version;
    string private _nameFallback;
    string private _versionFallback;

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(string memory name, string memory version) {
        _name = name.toShortStringWithFallback(_nameFallback);
        _version = version.toShortStringWithFallback(_versionFallback);
        _hashedName = keccak256(bytes(name));
        _hashedVersion = keccak256(bytes(version));

        _cachedChainId = block.chainid;
        _cachedDomainSeparator = _buildDomainSeparator();
        _cachedThis = address(this);
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
            return _cachedDomainSeparator;
        } else {
            return _buildDomainSeparator();
        }
    }

    function _buildDomainSeparator() private view returns (bytes32) {
        return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
    }

    /**
     * @dev See {IERC-5267}.
     */
    function eip712Domain()
        public
        view
        virtual
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        )
    {
        return (
            hex"0f", // 01111
            _EIP712Name(),
            _EIP712Version(),
            block.chainid,
            address(this),
            bytes32(0),
            new uint256[](0)
        );
    }

    /**
     * @dev The name parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _name which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Name() internal view returns (string memory) {
        return _name.toStringWithFallback(_nameFallback);
    }

    /**
     * @dev The version parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _version which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Version() internal view returns (string memory) {
        return _version.toStringWithFallback(_versionFallback);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/SignatureChecker.sol)

pragma solidity ^0.8.20;

import {ECDSA} from "./ECDSA.sol";
import {IERC1271} from "../../interfaces/IERC1271.sol";

/**
 * @dev Signature verification helper that can be used instead of `ECDSA.recover` to seamlessly support both ECDSA
 * signatures from externally owned accounts (EOAs) as well as ERC1271 signatures from smart contract wallets like
 * Argent and Safe Wallet (previously Gnosis Safe).
 */
library SignatureChecker {
    /**
     * @dev Checks if a signature is valid for a given signer and data hash. If the signer is a smart contract, the
     * signature is validated against that smart contract using ERC1271, otherwise it's validated using `ECDSA.recover`.
     *
     * NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
     * change through time. It could return true at block N and false at block N+1 (or the opposite).
     */
    function isValidSignatureNow(address signer, bytes32 hash, bytes memory signature) internal view returns (bool) {
        (address recovered, ECDSA.RecoverError error, ) = ECDSA.tryRecover(hash, signature);
        return
            (error == ECDSA.RecoverError.NoError && recovered == signer) ||
            isValidERC1271SignatureNow(signer, hash, signature);
    }

    /**
     * @dev Checks if a signature is valid for a given signer and data hash. The signature is validated
     * against the signer smart contract using ERC1271.
     *
     * NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
     * change through time. It could return true at block N and false at block N+1 (or the opposite).
     */
    function isValidERC1271SignatureNow(
        address signer,
        bytes32 hash,
        bytes memory signature
    ) internal view returns (bool) {
        (bool success, bytes memory result) = signer.staticcall(
            abi.encodeCall(IERC1271.isValidSignature, (hash, signature))
        );
        return (success &&
            result.length >= 32 &&
            abi.decode(result, (bytes32)) == bytes32(IERC1271.isValidSignature.selector));
    }
}

// SPDX-License-Identifier: MIT

pragma solidity 0.8.24;

/// @author Matter Labs
/// @custom:security-contact [email protected]
interface IProtocolUpgradeHandler {
    /// @dev This enumeration includes the following states:
    /// @param None Default state, indicating the upgrade has not been set.
    /// @param LegalVetoPeriod The upgrade passed L2 voting process but it is waiting for the legal veto period.
    /// @param Waiting The upgrade passed Legal Veto period but it is waiting for the approval from guardians or Security Council.
    /// @param ExecutionPending The upgrade proposal is waiting for the delay period before being ready for execution.
    /// @param Ready The upgrade proposal is ready to be executed.
    /// @param Expired The upgrade proposal was expired.
    /// @param Done The upgrade has been successfully executed.
    enum UpgradeState {
        None,
        LegalVetoPeriod,
        Waiting,
        ExecutionPending,
        Ready,
        Expired,
        Done
    }

    /// @dev Represents the status of an upgrade process, including the creation timestamp and actions made by guardians and Security Council.
    /// @param creationTimestamp The timestamp (in seconds) when the upgrade state was created.
    /// @param securityCouncilApprovalTimestamp The timestamp (in seconds) when Security Council approved the upgrade.
    /// @param guardiansApproval Indicates whether the upgrade has been approved by the guardians.
    /// @param guardiansExtendedLegalVeto Indicates whether guardians extended the legal veto period.
    /// @param executed Indicates whether the proposal is executed or not.
    struct UpgradeStatus {
        uint48 creationTimestamp;
        uint48 securityCouncilApprovalTimestamp;
        bool guardiansApproval;
        bool guardiansExtendedLegalVeto;
        bool executed;
    }

    /// @dev Represents a call to be made during an upgrade.
    /// @param target The address to which the call will be made.
    /// @param value The amount of Ether (in wei) to be sent along with the call.
    /// @param data The calldata to be executed on the `target` address.
    struct Call {
        address target;
        uint256 value;
        bytes data;
    }

    /// @dev Defines the structure of an upgrade that is executed by Protocol Upgrade Handler.
    /// @param executor The L1 address that is authorized to perform the upgrade execution (if address(0) then anyone).
    /// @param calls An array of `Call` structs, each representing a call to be made during the upgrade execution.
    /// @param salt A bytes32 value used for creating unique upgrade proposal hashes.
    struct UpgradeProposal {
        Call[] calls;
        address executor;
        bytes32 salt;
    }

    /// @dev This enumeration includes the following states:
    /// @param None Default state, indicating the freeze has not been happening in this upgrade cycle.
    /// @param Soft The protocol is/was frozen for the short time.
    /// @param Hard The protocol is/was frozen for the long time.
    /// @param AfterSoftFreeze The protocol was soft frozen, it can be hard frozen in this upgrade cycle.
    /// @param AfterHardFreeze The protocol was hard frozen, but now it can't be frozen until the upgrade.
    enum FreezeStatus {
        None,
        Soft,
        Hard,
        AfterSoftFreeze,
        AfterHardFreeze
    }

    function startUpgrade(
        uint256 _l2BatchNumber,
        uint256 _l2MessageIndex,
        uint16 _l2TxNumberInBatch,
        bytes32[] calldata _proof,
        UpgradeProposal calldata _proposal
    ) external;

    function extendLegalVeto(bytes32 _id) external;

    function approveUpgradeSecurityCouncil(bytes32 _id) external;

    function approveUpgradeGuardians(bytes32 _id) external;

    function execute(UpgradeProposal calldata _proposal) external payable;

    function executeEmergencyUpgrade(UpgradeProposal calldata _proposal) external payable;

    function softFreeze() external;

    function hardFreeze() external;

    function reinforceFreeze() external;

    function unfreeze() external;

    function reinforceFreezeOneChain(uint256 _chainId) external;

    function reinforceUnfreeze() external;

    function reinforceUnfreezeOneChain(uint256 _chainId) external;

    function upgradeState(bytes32 _id) external view returns (UpgradeState);

    function updateSecurityCouncil(address _newSecurityCouncil) external;

    function updateGuardians(address _newGuardians) external;

    function updateEmergencyUpgradeBoard(address _newEmergencyUpgradeBoard) external;

    /// @notice Emitted when the security council address is changed.
    event ChangeSecurityCouncil(address indexed _securityCouncilBefore, address indexed _securityCouncilAfter);

    /// @notice Emitted when the guardians address is changed.
    event ChangeGuardians(address indexed _guardiansBefore, address indexed _guardiansAfter);

    /// @notice Emitted when the emergency upgrade board address is changed.
    event ChangeEmergencyUpgradeBoard(
        address indexed _emergencyUpgradeBoardBefore, address indexed _emergencyUpgradeBoardAfter
    );

    /// @notice Emitted when upgrade process on L1 is started.
    event UpgradeStarted(bytes32 indexed _id, UpgradeProposal _proposal);

    /// @notice Emitted when the legal veto period is extended.
    event UpgradeLegalVetoExtended(bytes32 indexed _id);

    /// @notice Emitted when Security Council approved the upgrade.
    event UpgradeApprovedBySecurityCouncil(bytes32 indexed _id);

    /// @notice Emitted when Guardians approved the upgrade.
    event UpgradeApprovedByGuardians(bytes32 indexed _id);

    /// @notice Emitted when the upgrade is executed.
    event UpgradeExecuted(bytes32 indexed _id);

    /// @notice Emitted when the emergency upgrade is executed.
    event EmergencyUpgradeExecuted(bytes32 indexed _id);

    /// @notice Emitted when the protocol became soft frozen.
    event SoftFreeze(uint256 _protocolFrozenUntil);

    /// @notice Emitted when the protocol became hard frozen.
    event HardFreeze(uint256 _protocolFrozenUntil);

    /// @notice Emitted when someone makes an attempt to freeze the protocol when it is frozen already.
    event ReinforceFreeze();

    /// @notice Emitted when the protocol became active after the soft/hard freeze.
    event Unfreeze();

    /// @notice Emitted when someone makes an attempt to freeze the specific chain when the protocol is frozen already.
    event ReinforceFreezeOneChain(uint256 _chainId);

    /// @notice Emitted when someone makes an attempt to unfreeze the protocol when it is unfrozen already.
    event ReinforceUnfreeze();

    /// @notice Emitted when someone makes an attempt to unfreeze the specific chain when the protocol is unfrozen already.
    event ReinforceUnfreezeOneChain(uint256 _chainId);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol)

pragma solidity ^0.8.20;

import {Strings} from "../Strings.sol";

/**
 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
 *
 * The library provides methods for generating a hash of a message that conforms to the
 * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
 * specifications.
 */
library MessageHashUtils {
    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing a bytes32 `messageHash` with
     * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
     * keccak256, although any bytes32 value can be safely used because the final digest will
     * be re-hashed.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
            mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
            digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing an arbitrary `message` with
     * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
        return
            keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x00` (data with intended validator).
     *
     * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
     * `validator` address. Then hashing the result.
     *
     * See {ECDSA-recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(hex"19_00", validator, data));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`).
     *
     * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
     * `\x19\x01` and hashing the result. It corresponds to the hash signed by the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
     *
     * See {ECDSA-recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, hex"19_01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            digest := keccak256(ptr, 0x42)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ShortStrings.sol)

pragma solidity ^0.8.20;

import {StorageSlot} from "./StorageSlot.sol";

// | string  | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   |
// | length  | 0x                                                              BB |
type ShortString is bytes32;

/**
 * @dev This library provides functions to convert short memory strings
 * into a `ShortString` type that can be used as an immutable variable.
 *
 * Strings of arbitrary length can be optimized using this library if
 * they are short enough (up to 31 bytes) by packing them with their
 * length (1 byte) in a single EVM word (32 bytes). Additionally, a
 * fallback mechanism can be used for every other case.
 *
 * Usage example:
 *
 * ```solidity
 * contract Named {
 *     using ShortStrings for *;
 *
 *     ShortString private immutable _name;
 *     string private _nameFallback;
 *
 *     constructor(string memory contractName) {
 *         _name = contractName.toShortStringWithFallback(_nameFallback);
 *     }
 *
 *     function name() external view returns (string memory) {
 *         return _name.toStringWithFallback(_nameFallback);
 *     }
 * }
 * ```
 */
library ShortStrings {
    // Used as an identifier for strings longer than 31 bytes.
    bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;

    error StringTooLong(string str);
    error InvalidShortString();

    /**
     * @dev Encode a string of at most 31 chars into a `ShortString`.
     *
     * This will trigger a `StringTooLong` error is the input string is too long.
     */
    function toShortString(string memory str) internal pure returns (ShortString) {
        bytes memory bstr = bytes(str);
        if (bstr.length > 31) {
            revert StringTooLong(str);
        }
        return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
    }

    /**
     * @dev Decode a `ShortString` back to a "normal" string.
     */
    function toString(ShortString sstr) internal pure returns (string memory) {
        uint256 len = byteLength(sstr);
        // using `new string(len)` would work locally but is not memory safe.
        string memory str = new string(32);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(str, len)
            mstore(add(str, 0x20), sstr)
        }
        return str;
    }

    /**
     * @dev Return the length of a `ShortString`.
     */
    function byteLength(ShortString sstr) internal pure returns (uint256) {
        uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
        if (result > 31) {
            revert InvalidShortString();
        }
        return result;
    }

    /**
     * @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
     */
    function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
        if (bytes(value).length < 32) {
            return toShortString(value);
        } else {
            StorageSlot.getStringSlot(store).value = value;
            return ShortString.wrap(FALLBACK_SENTINEL);
        }
    }

    /**
     * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
     */
    function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return toString(value);
        } else {
            return store;
        }
    }

    /**
     * @dev Return the length of a string that was encoded to `ShortString` or written to storage using
     * {setWithFallback}.
     *
     * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
     * actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
     */
    function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return byteLength(value);
        } else {
            return bytes(store).length;
        }
    }
}

File 7 of 13 : IERC5267.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)

pragma solidity ^0.8.20;

interface IERC5267 {
    /**
     * @dev MAY be emitted to signal that the domain could have changed.
     */
    event EIP712DomainChanged();

    /**
     * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
     * signature.
     */
    function eip712Domain()
        external
        view
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        );
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     */
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address, RecoverError, bytes32) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1271.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC1271 standard signature validation method for
 * contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271].
 */
interface IERC1271 {
    /**
     * @dev Should return whether the signature provided is valid for the provided data
     * @param hash      Hash of the data to be signed
     * @param signature Signature byte array associated with _data
     */
    function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

Settings
{
  "remappings": [
    "@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "ds-test/=lib/openzeppelin-contracts-upgradeable/lib/forge-std/lib/ds-test/src/",
    "erc4626-tests/=lib/openzeppelin-contracts-upgradeable/lib/erc4626-tests/",
    "forge-std/=lib/forge-std/src/",
    "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "cancun",
  "viaIR": false,
  "libraries": {}
}

Contract ABI

API
[{"inputs":[{"internalType":"contract IProtocolUpgradeHandler","name":"_protocolUpgradeHandler","type":"address"},{"internalType":"address","name":"_securityCouncil","type":"address"},{"internalType":"address","name":"_guardians","type":"address"},{"internalType":"address","name":"_zkFoundation","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"InvalidShortString","type":"error"},{"inputs":[{"internalType":"string","name":"str","type":"string"}],"name":"StringTooLong","type":"error"},{"anonymous":false,"inputs":[],"name":"EIP712DomainChanged","type":"event"},{"inputs":[],"name":"GUARDIANS","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PROTOCOL_UPGRADE_HANDLER","outputs":[{"internalType":"contract IProtocolUpgradeHandler","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SECURITY_COUNCIL","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"ZK_FOUNDATION_SAFE","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"target","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"internalType":"struct IProtocolUpgradeHandler.Call[]","name":"_calls","type":"tuple[]"},{"internalType":"bytes32","name":"_salt","type":"bytes32"},{"internalType":"bytes","name":"_guardiansSignatures","type":"bytes"},{"internalType":"bytes","name":"_securityCouncilSignatures","type":"bytes"},{"internalType":"bytes","name":"_zkFoundationSignatures","type":"bytes"}],"name":"executeEmergencyUpgrade","outputs":[],"stateMutability":"nonpayable","type":"function"}]

6101e060405234801562000011575f80fd5b5060405162001483380380620014838339810160408190526200003491620001f6565b604080518082018252601581527f456d657267656e637955706772616465426f6172640000000000000000000000602080830191909152825180840190935260018352603160f81b90830152906200008d825f6200015b565b610120526200009e8160016200015b565b61014052815160208084019190912060e052815190820120610100524660a0526200012b60e05161010051604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201529081019290925260608201524660808201523060a08201525f9060c00160405160208183030381529060405280519060200120905090565b60805250503060c0526001600160a01b03938416610160529183166101805282166101a052166101c05262000437565b5f6020835110156200017a57620001728362000193565b90506200018d565b81620001878482620002f9565b5060ff90505b92915050565b5f80829050601f81511115620001c9578260405163305a27a960e01b8152600401620001c09190620003c5565b60405180910390fd5b8051620001d68262000413565b179392505050565b6001600160a01b0381168114620001f3575f80fd5b50565b5f805f80608085870312156200020a575f80fd5b84516200021781620001de565b60208601519094506200022a81620001de565b60408601519093506200023d81620001de565b60608601519092506200025081620001de565b939692955090935050565b634e487b7160e01b5f52604160045260245ffd5b600181811c908216806200028457607f821691505b602082108103620002a357634e487b7160e01b5f52602260045260245ffd5b50919050565b601f821115620002f457805f5260205f20601f840160051c81016020851015620002d05750805b601f840160051c820191505b81811015620002f1575f8155600101620002dc565b50505b505050565b81516001600160401b038111156200031557620003156200025b565b6200032d816200032684546200026f565b84620002a9565b602080601f83116001811462000363575f84156200034b5750858301515b5f19600386901b1c1916600185901b178555620003bd565b5f85815260208120601f198616915b82811015620003935788860151825594840194600190910190840162000372565b5085821015620003b157878501515f19600388901b60f8161c191681555b505060018460011b0185555b505050505050565b5f602080835283518060208501525f5b81811015620003f357858101830151858201604001528201620003d5565b505f604082860101526040601f19601f8301168501019250505092915050565b80516020808301519190811015620002a3575f1960209190910360031b1b16919050565b60805160a05160c05160e05161010051610120516101405161016051610180516101a0516101c051610fb9620004ca5f395f818161012b015261048901525f818160ad015261028a01525f81816069015261038601525f818160ef015261051601525f6105c001525f61058f01525f6108c701525f61089f01525f6107fa01525f61082401525f61084e0152610fb95ff3fe608060405234801561000f575f80fd5b5060043610610060575f3560e01c806336086417146100645780633f6b9ddb146100a857806384b0196e146100cf578063b4c77c3b146100ea578063c03fd44b14610111578063c2646db414610126575b5f80fd5b61008b7f000000000000000000000000000000000000000000000000000000000000000081565b6040516001600160a01b0390911681526020015b60405180910390f35b61008b7f000000000000000000000000000000000000000000000000000000000000000081565b6100d761014d565b60405161009f9796959493929190610ad9565b61008b7f000000000000000000000000000000000000000000000000000000000000000081565b61012461011f366004610bb5565b61018f565b005b61008b7f000000000000000000000000000000000000000000000000000000000000000081565b5f6060805f805f606061015e610588565b6101666105b9565b604080515f80825260208201909252600f60f81b9b939a50919850469750309650945092509050565b5f60405180606001604052808b8b906101a89190610d14565b8152602001306001600160a01b031681526020018981525090505f816040516020016101d49190610e33565b6040516020818303038152906040528051906020012090505f6102477fca13e65539327d441ed2bdec279e457a1af26eb3e4dbe09fcd7a8633662af7e28360405160200161022c929190918252602082015260400190565b604051602081830303815290604052805190602001206105e6565b90506102b4818a8a8080601f0160208091040260200160405190810160405280939291908181526020018383808284375f92019190915250506001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000169392915050610618565b6103055760405162461bcd60e51b815260206004820152601c60248201527f496e76616c696420677561726469616e73207369676e6174757265730000000060448201526064015b60405180910390fd5b604080517fca6492c171331a4293d71e9e45f05ca3db6aaf73acc6e0cde07a1bdc2a119cdc60208201529081018390525f906103439060600161022c565b90506103b08189898080601f0160208091040260200160405190810160405280939291908181526020018383808284375f92019190915250506001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000169392915050610618565b6104085760405162461bcd60e51b815260206004820152602360248201527f496e76616c696420536563757269747920436f756e63696c207369676e61747560448201526272657360e81b60648201526084016102fc565b604080517fbc65a4e7edaf75c145d74b7c4e65a168cf6bce5e78f11e27fcd63ed0c62afacf60208201529081018490525f906104469060600161022c565b90506104b38188888080601f0160208091040260200160405190810160405280939291908181526020018383808284375f92019190915250506001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001693929150506106ef565b6104ff5760405162461bcd60e51b815260206004820181905260248201527f496e76616c6964205a4b20466f756e646174696f6e207369676e61747572657360448201526064016102fc565b604051632291ed1b60e11b81526001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001690634523da369061054b908890600401610e33565b5f604051808303815f87803b158015610562575f80fd5b505af1158015610574573d5f803e3d5ffd5b505050505050505050505050505050505050565b60606105b47f00000000000000000000000000000000000000000000000000000000000000005f610744565b905090565b60606105b47f00000000000000000000000000000000000000000000000000000000000000006001610744565b5f6106126105f26107ee565b8360405161190160f01b8152600281019290925260228201526042902090565b92915050565b5f805f856001600160a01b03168585604051602401610638929190610ee5565b60408051601f198184030181529181526020820180516001600160e01b0316630b135d3f60e11b1790525161066d9190610f05565b5f60405180830381855afa9150503d805f81146106a5576040519150601f19603f3d011682016040523d82523d5f602084013e6106aa565b606091505b50915091508180156106be57506020815110155b80156106e557508051630b135d3f60e11b906106e39083016020908101908401610f20565b145b9695505050505050565b5f805f6106fc8585610917565b5090925090505f81600381111561071557610715610f37565b1480156107335750856001600160a01b0316826001600160a01b0316145b806106e557506106e5868686610618565b606060ff831461075e5761075783610960565b9050610612565b81805461076a90610f4b565b80601f016020809104026020016040519081016040528092919081815260200182805461079690610f4b565b80156107e15780601f106107b8576101008083540402835291602001916107e1565b820191905f5260205f20905b8154815290600101906020018083116107c457829003601f168201915b5050505050905092915050565b5f306001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001614801561084657507f000000000000000000000000000000000000000000000000000000000000000046145b1561087057507f000000000000000000000000000000000000000000000000000000000000000090565b6105b4604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201527f0000000000000000000000000000000000000000000000000000000000000000918101919091527f000000000000000000000000000000000000000000000000000000000000000060608201524660808201523060a08201525f9060c00160405160208183030381529060405280519060200120905090565b5f805f835160410361094e576020840151604085015160608601515f1a6109408882858561099d565b955095509550505050610959565b505081515f91506002905b9250925092565b60605f61096c83610a65565b6040805160208082528183019092529192505f91906020820181803683375050509182525060208101929092525090565b5f80807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08411156109d657505f91506003905082610a5b565b604080515f808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa158015610a27573d5f803e3d5ffd5b5050604051601f1901519150506001600160a01b038116610a5257505f925060019150829050610a5b565b92505f91508190505b9450945094915050565b5f60ff8216601f81111561061257604051632cd44ac360e21b815260040160405180910390fd5b5f5b83811015610aa6578181015183820152602001610a8e565b50505f910152565b5f8151808452610ac5816020860160208601610a8c565b601f01601f19169290920160200192915050565b60ff60f81b881681525f602060e06020840152610af960e084018a610aae565b8381036040850152610b0b818a610aae565b606085018990526001600160a01b038816608086015260a0850187905284810360c0860152855180825260208088019350909101905f5b81811015610b5e57835183529284019291840191600101610b42565b50909c9b505050505050505050505050565b5f8083601f840112610b80575f80fd5b50813567ffffffffffffffff811115610b97575f80fd5b602083019150836020828501011115610bae575f80fd5b9250929050565b5f805f805f805f805f60a08a8c031215610bcd575f80fd5b893567ffffffffffffffff80821115610be4575f80fd5b818c0191508c601f830112610bf7575f80fd5b813581811115610c05575f80fd5b8d60208260051b8501011115610c19575f80fd5b60209283019b509950908b0135975060408b01359080821115610c3a575f80fd5b610c468d838e01610b70565b909850965060608c0135915080821115610c5e575f80fd5b610c6a8d838e01610b70565b909650945060808c0135915080821115610c82575f80fd5b50610c8f8c828d01610b70565b915080935050809150509295985092959850929598565b634e487b7160e01b5f52604160045260245ffd5b6040516060810167ffffffffffffffff81118282101715610cdd57610cdd610ca6565b60405290565b604051601f8201601f1916810167ffffffffffffffff81118282101715610d0c57610d0c610ca6565b604052919050565b5f67ffffffffffffffff80841115610d2e57610d2e610ca6565b8360051b6020610d3f818301610ce3565b868152918501918181019036841115610d56575f80fd5b865b84811015610e2757803586811115610d6e575f80fd5b88016060368290031215610d80575f80fd5b610d88610cba565b81356001600160a01b0381168114610d9e575f80fd5b8152818601358682015260408083013589811115610dba575f80fd5b9290920191601f3681850112610dce575f80fd5b83358a811115610de057610de0610ca6565b610df1818301601f19168a01610ce3565b91508082523689828701011115610e06575f80fd5b808986018a8401375f90820189015290820152845250918301918301610d58565b50979650505050505050565b5f60208083526080830184516060808487015282825180855260a08801915060a08160051b890101945085840193505f5b81811015610eb757888603609f19018352845180516001600160a01b031687528781015188880152604090810151908701859052610ea485880182610aae565b9650509386019391860191600101610e64565b50505050918501516001600160a01b0381166040860152915060408501516060850152809250505092915050565b828152604060208201525f610efd6040830184610aae565b949350505050565b5f8251610f16818460208701610a8c565b9190910192915050565b5f60208284031215610f30575f80fd5b5051919050565b634e487b7160e01b5f52602160045260245ffd5b600181811c90821680610f5f57607f821691505b602082108103610f7d57634e487b7160e01b5f52602260045260245ffd5b5091905056fea26469706673582212200c166ea6dd3ab3d912901bebe655c8ad3e6d871845812c00a96142ecd66cf65d64736f6c63430008180033000000000000000000000000e3a615778aeec76df1b368948a1d1614497db85800000000000000000000000025ab0397da109a50c8921a1d4a034e09736024690000000000000000000000003a8ac6a7a4a026f42f805b40bb992edf0165459500000000000000000000000046d3c220de912100de9ee5052511ad5fcb2c190b

Deployed Bytecode

0x608060405234801561000f575f80fd5b5060043610610060575f3560e01c806336086417146100645780633f6b9ddb146100a857806384b0196e146100cf578063b4c77c3b146100ea578063c03fd44b14610111578063c2646db414610126575b5f80fd5b61008b7f00000000000000000000000025ab0397da109a50c8921a1d4a034e097360246981565b6040516001600160a01b0390911681526020015b60405180910390f35b61008b7f0000000000000000000000003a8ac6a7a4a026f42f805b40bb992edf0165459581565b6100d761014d565b60405161009f9796959493929190610ad9565b61008b7f000000000000000000000000e3a615778aeec76df1b368948a1d1614497db85881565b61012461011f366004610bb5565b61018f565b005b61008b7f00000000000000000000000046d3c220de912100de9ee5052511ad5fcb2c190b81565b5f6060805f805f606061015e610588565b6101666105b9565b604080515f80825260208201909252600f60f81b9b939a50919850469750309650945092509050565b5f60405180606001604052808b8b906101a89190610d14565b8152602001306001600160a01b031681526020018981525090505f816040516020016101d49190610e33565b6040516020818303038152906040528051906020012090505f6102477fca13e65539327d441ed2bdec279e457a1af26eb3e4dbe09fcd7a8633662af7e28360405160200161022c929190918252602082015260400190565b604051602081830303815290604052805190602001206105e6565b90506102b4818a8a8080601f0160208091040260200160405190810160405280939291908181526020018383808284375f92019190915250506001600160a01b037f0000000000000000000000003a8ac6a7a4a026f42f805b40bb992edf01654595169392915050610618565b6103055760405162461bcd60e51b815260206004820152601c60248201527f496e76616c696420677561726469616e73207369676e6174757265730000000060448201526064015b60405180910390fd5b604080517fca6492c171331a4293d71e9e45f05ca3db6aaf73acc6e0cde07a1bdc2a119cdc60208201529081018390525f906103439060600161022c565b90506103b08189898080601f0160208091040260200160405190810160405280939291908181526020018383808284375f92019190915250506001600160a01b037f00000000000000000000000025ab0397da109a50c8921a1d4a034e0973602469169392915050610618565b6104085760405162461bcd60e51b815260206004820152602360248201527f496e76616c696420536563757269747920436f756e63696c207369676e61747560448201526272657360e81b60648201526084016102fc565b604080517fbc65a4e7edaf75c145d74b7c4e65a168cf6bce5e78f11e27fcd63ed0c62afacf60208201529081018490525f906104469060600161022c565b90506104b38188888080601f0160208091040260200160405190810160405280939291908181526020018383808284375f92019190915250506001600160a01b037f00000000000000000000000046d3c220de912100de9ee5052511ad5fcb2c190b1693929150506106ef565b6104ff5760405162461bcd60e51b815260206004820181905260248201527f496e76616c6964205a4b20466f756e646174696f6e207369676e61747572657360448201526064016102fc565b604051632291ed1b60e11b81526001600160a01b037f000000000000000000000000e3a615778aeec76df1b368948a1d1614497db8581690634523da369061054b908890600401610e33565b5f604051808303815f87803b158015610562575f80fd5b505af1158015610574573d5f803e3d5ffd5b505050505050505050505050505050505050565b60606105b47f456d657267656e637955706772616465426f61726400000000000000000000155f610744565b905090565b60606105b47f31000000000000000000000000000000000000000000000000000000000000016001610744565b5f6106126105f26107ee565b8360405161190160f01b8152600281019290925260228201526042902090565b92915050565b5f805f856001600160a01b03168585604051602401610638929190610ee5565b60408051601f198184030181529181526020820180516001600160e01b0316630b135d3f60e11b1790525161066d9190610f05565b5f60405180830381855afa9150503d805f81146106a5576040519150601f19603f3d011682016040523d82523d5f602084013e6106aa565b606091505b50915091508180156106be57506020815110155b80156106e557508051630b135d3f60e11b906106e39083016020908101908401610f20565b145b9695505050505050565b5f805f6106fc8585610917565b5090925090505f81600381111561071557610715610f37565b1480156107335750856001600160a01b0316826001600160a01b0316145b806106e557506106e5868686610618565b606060ff831461075e5761075783610960565b9050610612565b81805461076a90610f4b565b80601f016020809104026020016040519081016040528092919081815260200182805461079690610f4b565b80156107e15780601f106107b8576101008083540402835291602001916107e1565b820191905f5260205f20905b8154815290600101906020018083116107c457829003601f168201915b5050505050905092915050565b5f306001600160a01b037f0000000000000000000000000b2b3d1d87933c5009c49effbae279cdf39c6c961614801561084657507f0000000000000000000000000000000000000000000000000000000000aa36a746145b1561087057507fbbce6fcdaf849e4fdbaf13882a4b69d01607fce3e0dadfcb7eb628c9f810342190565b6105b4604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201527f09e7b74238054110bafcefc73054144d67fe22a2ed5c1eedf64ff5ea802611fd918101919091527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc660608201524660808201523060a08201525f9060c00160405160208183030381529060405280519060200120905090565b5f805f835160410361094e576020840151604085015160608601515f1a6109408882858561099d565b955095509550505050610959565b505081515f91506002905b9250925092565b60605f61096c83610a65565b6040805160208082528183019092529192505f91906020820181803683375050509182525060208101929092525090565b5f80807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08411156109d657505f91506003905082610a5b565b604080515f808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa158015610a27573d5f803e3d5ffd5b5050604051601f1901519150506001600160a01b038116610a5257505f925060019150829050610a5b565b92505f91508190505b9450945094915050565b5f60ff8216601f81111561061257604051632cd44ac360e21b815260040160405180910390fd5b5f5b83811015610aa6578181015183820152602001610a8e565b50505f910152565b5f8151808452610ac5816020860160208601610a8c565b601f01601f19169290920160200192915050565b60ff60f81b881681525f602060e06020840152610af960e084018a610aae565b8381036040850152610b0b818a610aae565b606085018990526001600160a01b038816608086015260a0850187905284810360c0860152855180825260208088019350909101905f5b81811015610b5e57835183529284019291840191600101610b42565b50909c9b505050505050505050505050565b5f8083601f840112610b80575f80fd5b50813567ffffffffffffffff811115610b97575f80fd5b602083019150836020828501011115610bae575f80fd5b9250929050565b5f805f805f805f805f60a08a8c031215610bcd575f80fd5b893567ffffffffffffffff80821115610be4575f80fd5b818c0191508c601f830112610bf7575f80fd5b813581811115610c05575f80fd5b8d60208260051b8501011115610c19575f80fd5b60209283019b509950908b0135975060408b01359080821115610c3a575f80fd5b610c468d838e01610b70565b909850965060608c0135915080821115610c5e575f80fd5b610c6a8d838e01610b70565b909650945060808c0135915080821115610c82575f80fd5b50610c8f8c828d01610b70565b915080935050809150509295985092959850929598565b634e487b7160e01b5f52604160045260245ffd5b6040516060810167ffffffffffffffff81118282101715610cdd57610cdd610ca6565b60405290565b604051601f8201601f1916810167ffffffffffffffff81118282101715610d0c57610d0c610ca6565b604052919050565b5f67ffffffffffffffff80841115610d2e57610d2e610ca6565b8360051b6020610d3f818301610ce3565b868152918501918181019036841115610d56575f80fd5b865b84811015610e2757803586811115610d6e575f80fd5b88016060368290031215610d80575f80fd5b610d88610cba565b81356001600160a01b0381168114610d9e575f80fd5b8152818601358682015260408083013589811115610dba575f80fd5b9290920191601f3681850112610dce575f80fd5b83358a811115610de057610de0610ca6565b610df1818301601f19168a01610ce3565b91508082523689828701011115610e06575f80fd5b808986018a8401375f90820189015290820152845250918301918301610d58565b50979650505050505050565b5f60208083526080830184516060808487015282825180855260a08801915060a08160051b890101945085840193505f5b81811015610eb757888603609f19018352845180516001600160a01b031687528781015188880152604090810151908701859052610ea485880182610aae565b9650509386019391860191600101610e64565b50505050918501516001600160a01b0381166040860152915060408501516060850152809250505092915050565b828152604060208201525f610efd6040830184610aae565b949350505050565b5f8251610f16818460208701610a8c565b9190910192915050565b5f60208284031215610f30575f80fd5b5051919050565b634e487b7160e01b5f52602160045260245ffd5b600181811c90821680610f5f57607f821691505b602082108103610f7d57634e487b7160e01b5f52602260045260245ffd5b5091905056fea26469706673582212200c166ea6dd3ab3d912901bebe655c8ad3e6d871845812c00a96142ecd66cf65d64736f6c63430008180033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

000000000000000000000000e3a615778aeec76df1b368948a1d1614497db85800000000000000000000000025ab0397da109a50c8921a1d4a034e09736024690000000000000000000000003a8ac6a7a4a026f42f805b40bb992edf0165459500000000000000000000000046d3c220de912100de9ee5052511ad5fcb2c190b

-----Decoded View---------------
Arg [0] : _protocolUpgradeHandler (address): 0xe3a615778aeEC76df1B368948a1D1614497Db858
Arg [1] : _securityCouncil (address): 0x25Ab0397DA109A50C8921A1d4a034e0973602469
Arg [2] : _guardians (address): 0x3A8Ac6A7a4A026F42f805B40bB992edF01654595
Arg [3] : _zkFoundation (address): 0x46d3c220de912100DE9Ee5052511ad5FCb2C190b

-----Encoded View---------------
4 Constructor Arguments found :
Arg [0] : 000000000000000000000000e3a615778aeec76df1b368948a1d1614497db858
Arg [1] : 00000000000000000000000025ab0397da109a50c8921a1d4a034e0973602469
Arg [2] : 0000000000000000000000003a8ac6a7a4a026f42f805b40bb992edf01654595
Arg [3] : 00000000000000000000000046d3c220de912100de9ee5052511ad5fcb2c190b


Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
0x0B2b3D1d87933C5009C49EffBAe279cdF39c6C96
Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.